ITU-T Software Tool Library 2009 User’s Manual

ITU-T Users’ Group on Software Tools

Geneva, November 2009

Copyright © 2005, 2006, 2009 by the International Telecommunication Union (ITU)

This is edition 1.0 of the “ITU-T Software Tool Library Manual”, for the 2009 release of the
ITU-T Software Tool Library, distribution 1.0, November 2009, generated using I5IgX on Febru-
ary 15, 2010

Published by the ITU. Copies of this manual are available as part of the STL2009 distribution.
STL2009 copies can be acquired :

ITU General Secretariat
Sales Service

Place du Nations
CH-1211 Geneve 20
Switzerland

Also freely downloadable via the Internet from:
http://www.itu.int/rec/T-REC-G.191/en

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

http://www.itu.int/rec/T-REC-G.191/en

Contents

1 Introduction

1.1 Organization of the Software Library
1.2 Whomtocontact e
1.3 Acknowledgements
2 Tutorial
2.1 ACIONYMS e e e e e e e e e e e e e e
2.2 Definitionof termso e e e
22.1 Overloadpoint e
222 Signal power e e e e e e
223 Signallevel e
2.2.4 Relation between overload and maximum levels
225 Saturation e e e e e e e e e e
2.2.6 Datarepresentation el
2277 Datajustification Lo
2.2.8 Equivalentresults e
2.2.9 Little- and big-endian data ordering
2.3 Guidelines for software tool development
2.4 Software module I/O signal representation
2.5 Tool specifications e e e e e
3 G.711: The ITU-T 64 kbit/s log-PCM algorithm
3.1 Description of the algorithm
3.2 Implementation oL e e e e e
3.2.1 alaw_compress andulaw_compress
3.2.2 alawexpandandulawexpand.
3.3 Testsand portability L L
34 Examplecode

AW

O O O o0 oo o0 N 2

— = e e e e e
N N W= = O O

i

4

ITU-T Software Tool Library, release 2009

3.4.1 Description of the demonstration program 24

342 Simpleexample. L Lo 25

G.711 Appendix I: A high quality low-complexity algorithm for packet loss con-

cealment with G.711. 27
4.1 Introduction L. e e e e 27
4.2 Description of the algorithm, 27
4.3 Implementation e e e e e e e e 28
43.1 Introduction. e 28
4.3.2 PLC Algorithm Implementation 28
433 TestProgram e 30
4.3.4 Loss Pattern Conversion Utility 32
G.726: The ITU-T ADPCM algorithm at 40, 32, 24, and 16 kbit/s 35
5.1 Description of the 32 kbit/s ADPCM 36
5.1.1 PCM format conversion v v it 36
5.1.2 Difference Signal Computation 36
5.1.3 Adaptive Quantizer Lo 36
5.1.4 Inverse Adaptive Quantizer 37
5.1.5 Quantizer Scale Factor Adaptation 37
5.1.6 Adaptation Speed Control 37
5.1.7 Adaptive Predictor and Reconstructed Signal Calculator 38
5.1.8 Tone Transition and Detector 38
5.1.9 Output PCM Format Conversion 38
5.1.10 Synchronous Coding Adjustment 38
5.1.11 Extension for linear input and output signals 38
5.2 ITU-T STL G.726 Implementation 39
521 G726.encode 40
522 G726.decode 41
5.3 Portability and compliance L L oo 42
54 Examplecode 43
5.4.1 Description of the demonstration programs 43
542 Simpleexample L L L 43
G.727: The ITU-T embedded ADPCM algorithm at 40, 32, 24, and 16 kbit/s 45
6.1 Description of the Embedded ADPCM 45

6.1.1 Extension for linear input and output signals 45

Version: November 30, 2009 1ii

6.2 ITU-T STL G.727 Implementation 45
6.2.1 G727reset 47

6.2.2 G727-encode e 47

6.23 G727 decode 48

6.3 Portability and compliance L Lo 48
6.4 Examplecode 49
6.4.1 Description of the demonstration program 49

6.42 Simpleexample. e 49

7 G.728: The ITU-T low-delay CELP algorithm at 16 kbit/s 51
7.1 General OVEIVIEW L.l e e e e 53
7.1.1 General characteristics 53

7.1.2 Type of algorithm specification 53

713 Delay o 54

7.1.4 Backward adaptation 54

7.1.5 Windowing used in the adaptation 54

7.1.6 White noise correctionl e e 56

7.177 Bandwidthexpansion. 57

7.1.8 Inputand output formats 58

7.2 Encoder Structurest e e e e e e e 58
7.2.1 LPCsynthesisfilter 58

7.2.2 Perceptual weighting filter 59

7.2.3 Search of optimal excitation codevector 59

7.2.4 Denormalizing quantized excitation 60

7.2.5 Adaptation of excitationgain 60

7.2.6 Adaptation of perceptual adaptation filter 61

7.2.77 Adaptation of LPC synthesis filter 61

7.3 Decoder Structureso e e e e e e e e e e e e 61
7.3.1 Post-filter and its adaptation oL 61

7.4 ITU-T STL G.728 Implementation 63
7.4.1 Floating-point G.728 e 63

7.4.2 G.728 Floating-point Encoder 64

7.4.3 G.728 Floating-point Decoder 65

7.4.4 G.728 Floating-point Encoder/Decoder 66

7.4.5 G.728 Floating-point Decoder with Packet Loss Concealment 67

74.6 Fixed-point G.728 68

v ITU-T Software Tool Library, release 2009
7.4.7 G.728 Fixed-point Encoder/Decoder 69
7.4.8 G.728 Demonstration Program 69
7.4.9 G.728 Demonstration Program Modes 70
7.4.10 G.728 Demonstration Program with Test Vectors 71
8 G.722: The ITU-T 64, 56, and 48 kbit/s wideband speech coding algorithm 73
8.1 Description of the 64, 56, and 48 kbit/s G.722 algorithm 75
8.1.1 Functional description of the SB-ADPCM encoder 75
8.1.2 Functional description of the SB-ADPCM decoder 77
8.1.3 Functional description of the basic Packet Loss Concealment functionality 80
8.2 Standalone G.192 compatible G.722 encoder and decoder tool 80
8.2.1 G.192 bit stream format for standalone G.722 encoder and decoder . . 80
8.2.2 Standalone G.722 Encoder specific operation 82
8.3 ITU-T STL G.722 Implementation 83
8.3.1 g722.encode e e e 84
8.3.2 g722decode e 86
8.3.3 g722_reset_encoder 87
8.34 g722_reset.decoder 87
8.4 Portability and compliance oL oL 88
8.5 Encoder(encg722) tool command line options 88
8.6 Decoder (decg722) tool command lineoptions 88
87 Examplecode 89
8.7.1 Description of the demonstration programs 89
87.2 Simpleexample. L L o o 90
8.7.3 Example operation of encoder (encg722) 91
8.7.4 Example operation of decoder (decg722) 91
9 RPE-LTP: The full-rate GSM codec 93
9.1 Description of the 13 kbit/s RPE-LTP algorithm 93
9.1.1 RPE-LTPEncoder 93
9.1.2 RPE-LTPDecoder 95
9.2 Implementation e e e e 95
92.1 rpeltpencode e 96
9.2.2 rpeltpdecode e 98
023 rpeltpinit e 99

924 rpeltp.delete e 99

Version: November 30, 2009

9.3
9.4

Portability and compliance oL

Examplecode e

94.1
94.2

Description of the demonstration program

Simpleexample

10 RATE-CHANGE: Up- and down-sampling module

10.1 Description of the Algorithm

10.2

10.3
10.4

11 EID:

11.2

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6

High-quality
Narrowband weighting
Wideband weighting
Greater wideband weightings
Noise weighting L

PCM Quality e e e

Implementation

10.2.1
10.2.2

FIRmodule e
IR Module s

Testsand portability e

Examples e e

10.4.1
10.4.2

Description of the demonstration programs

Example: Calculating frequency responses

Error Insertion Device

Description of Algorithm L o oo

11.1.1
11.1.2
11.1.3

Simple Channel Model
Bellcore Model

Error insertion for layered bitstreams

Implementation

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.2.8
11.2.9

Bitstream format L L L
open_eid e e e
openburst_eid e
reset bursteid e
closeeid e
BER _generator i i i e e e e
FER generator random,
FER generator burst

BER_insertion i i v i e e

99
100
100
100

103
103
104
105
107
108
108
109
109
111
145
155
155
155
156

vi ITU-T Software Tool Library, release 2009

11.2.10FERmodule
11.3 Testsand portability e
11.4 Examples e
11.4.1 Description of demonstration programs
11.4.2 Using bit-error insertion routine« . . . o v v v v .
11.4.3 Using frame erasure routine

11.4.4 Using layered bitstream error routine (eid-ev)

12 Duo-MNRU: The Dual-mode Modulated Noise Reference Unit
12.1 Description of the Algorithm
12.2 ITmplementation o vt i e e e e e e e
12.2.1 MNRU_DPIOCESS v v v v e e e e e e e e e e e e
12.3 Portability and compliance o L.
124 Examplecode e e e e e e e
12.4.1 Description of the demonstration programs

1242 Simpleexample e

13 SVP56: The Speech Voltmeter
13.1 Description of the Algorithm
13.2 Implementation Lo e e e e e
13.2.1 init_speech voltmeter
13.2.2 speech_voltmeter
13.2.3 Getting state variable fields
13.3 Portability and compliance oL Lo
13.4 Examples e e e e e
13.4.1 Description of the demonstration programs

13.4.2 Smallexample e

14 ITU-T Reverberation tool
14.1 Introduction e e
14.2 Description of the algorithm L L.
14.2.1 Algorithm
14.2.2 Mono impulSe response v it i e e e
14.2.3 Stereo impulse reSponse o . e e e e e
14.2.4 Impulse response file format 0oL

14.3 Implementation e

183
184
185
192
194
194
194
194

197
197
199
200
201
201
202
202
202
203

Version: November 30, 2009

143.1 shift e
1432 conv e e e e
14.3.3 Testsand portability,
144 Examplecode e e e

15 ITU-T Bitstream truncation tool
15.1 Introduction L e
15.2 Description of the algorithm, .
15.3 Implementation e e e e e e
I53.1 trunc L e e e e
15.3.2 Testsand portability,
154 Examplecode e e e e

16 ITU-T frequency response measurement tool
16.1 Introduction i i e e e e
16.2 Description of the algorithm,
16.2.1 Discrete Fourier Transform (DFT)
16.2.2 Hanning window generation (DFT)
16.2.3 Windowoverlap e
16.2.4 Variable framesize o .
16.2.5 Computation optimization« . v v v v v v v
16.3 TestSignals o L e e
16.3.1 Narrow band and wideband oL
16.3.2 Superwideband and fullband,
16.4 ITmplementation i e e e e e e e
16.4.1 rdft e
16.4.2 genHanning v v i v i e e
16.4.3 powSpect e
1644 actrdft
16.4.5 Tests and portability
16.5 Examplecode

17 ITU-T Stereo processing tool
17.1 Introduction e e
17.2 Description of the algorithm

17.3 Implementation e

Vil

211
212
213
213

215
215
215
216
216
217
217

219
219
219
220
220
220
220
222
222
222
222
223
223
223
223
224
224
224

viil ITU-T Software Tool Library, release 2009

17.3.1 Dataandfileformat
17.3.2 stereoopmodule L L L
17.4 Tests and Portability
17.5 Examplecode e

18 BASOP: ITU-T Basic Operators

18.1 Overview of basic operator libraries
18.2 Description of the 16-bit and 32-bit basic operators and associated weights . . .
18.2.1 Variable definitions Lo
18.2.2 Operators with complexity weightof 1
18.2.3 Operators with complexity weightof2
18.2.4 Operators with complexity weightof3
18.2.5 Operators with complexity weightof4
18.2.6 Operators with complexity weightof5
18.2.7 Operators with complexity weightof 18
18.2.8 Operators with complexity weightof32
18.2.9 Basic operator usage across standards oL
18.3 Description of the 40-bit basic operators and associated weights
18.3.1 Variable definitions Lo Lo
18.3.2 Operators with complexity weightof 1
18.3.3 Operators with complexity weightof2
18.3.4 Operators with complexity weightof3
18.3.5 Operators with complexity weightof4
18.3.6 Coding Guidelines,
18.4 Description of the control basic operators and associated weights
18.4.1 Operators and complexity weights
18.4.2 Coding guidelines
18.5 Complexity associated with data moves and other operations
185.1 Datamoves e
18.5.2 Otheroperations v v v v v i i v it
18.6 Program ROM estimation tool for fixed-point CCode
18.6.1 Tool Description i i it
18.6.2 Tool implementation
18.6.3 Example e
18.7 Complexity evaluation tool for floating-point CCode
18.7.1 Imtroduction e

Version: November 30, 2009

18.7.2 Tool Description

18.7.3 Complexity Verification Method

18.7.4 Tool implementation

18.7.5 Scalingfactor e

18.7.6 List of complexity measurement counters

18.7.7 Examples of instrumentation of thecode
18.7.8 Testsand Portability,
1879 Examplecode L

19 UTILITIES: UGST utilities

19.1 Some definitions o o e e e e e e e e e e e

19.2 Implementation e
1921 scale e
1922 sh2fl L
1923 sh2fl alt e
19.24 fl2sh e

19.2.5 serialize *_ justified

19.2.6 parallelize * justified.

19.3 Portability and compliance 0oL

19.4 Examplecode e e e e

19.4.1 Description of the demonstration programs

19.4.2 The master header file for the STL demonstration programs

19.4.3 Short and float conversion and scaling routines

19.4.4 Serialization and parallelization routines

A Unsupported tools

A1l Sourcecode e e e

A.2 Scripts .
A.3 Makefiles
A4 Test files

B Future work

X

257
258
258
259
259
260
262
262

265
265
265
266
266
267
268
269
270
271
272
272
272
273
274

283
283
284
284
284

287

ITU-T Software Tool Library, release 2009

Chapter 1

Introduction

In July 1990, Study Group XV of the then CCITT decided to set up a group to deal with the
development of common software tools to help in the development of speech coding standards.
In the same period, cooperation was requested with SG XII Speech Quality Experts Group
(SQEG), and a group called ‘User’s Group on Software Tools’ (UGST) was initially estab-
lished with almost 20 corresponding members. The basic means of interaction were the then
incipient electronic mail (e-mail) messages, for the exchange of files and experiences — UGST
was actually one of the pioneer groups in ITU collaborating via electronic means. In addition to
this, there were meetings held mainly during regular Working Party XV/2 (Signal Processing)
sessions, where most of the decisions were made.

As result of that very intensive work, several software tools evolved forming the ‘1992 ITU-
T Software Tool Library’ (STL92) which included, as its first application, the Qualification
Test for a Speech Coder at 8 kbit/s. After this initial release, another release was approved by
ITU-T Study Group 15 in May, 1996, and called STL96. The STL96 introduced substantive
improvement and new features to the STL92. In November 2000, ITU-T Study Group 16
approved an updated version to the STL, the STL2000. In 2005, another updated version of the
STL, STL2005, was accepted. In 2009, a new version of the STL, (STL2009) was developed.
STL2009 corrects bugs and brings revisions (such as G.722 codec software, basic operators C-
code, or reverberation tool), and adds new tools (more FIR filters, new EID tool, basic operator
counters, floating-point complexity counters, and a stereo operator tool). Note that for STL2009
release, non-ASCII (American Standard Code for Information Interchange) encoded characters
were substituted by ones in ASCII, for wider compiler portability. A potential bug related to
memory leak in ugst-demo.h possibly caused by very long filenames is fixed. All files that
make use of GET_PAR_C() macro is affected. STL2009 is described in this document. Terms
and conditions on the usage of the ITU-T STL are found in ITU-T Recommendation G.191 [1].

The remaining chapters of this document describe the principles that guided the generation of
the ITU-T STL, as well as the description of its organization. The various tools are described
in separate chapters. These descriptions have the following general outline:

a. technical description of the method or algorithm involved;

b. description of the algorithm implementation in this release (including prototypes,
parameters, returned value, etc.); and
c. testing, applications and examples.

All the STL2000 modules had their portability tested for MS-DOS/Windows and several Unix
flavors. In MS-DOS, all modules were tested with the MS-DOS port of the GNU gcc compiler

2 ITU-T Software Tool Library, release 2009

(a.k.a. DJCPP) and with at least one of these Borland compilers: Turbo C 2.0, Turbo C++
2.0, or Borland C++ 3.1. In the Windows environment, the code was tested using MS Visual
C version 6.1 SP3 as well as using the gcc compiler available in the Cygnus CYGWIN devel-
opment environment (www . cygnus . com). The VAX/VMS environment was fully supported in
the STL96 (VAXC and gcc), however it was not possible to continue it for the STL2000 due to
operational reasons; nevertheless, compilation under gcc should provide the expected results,
and some tools were tested for Ultrix. For the Unix operating system, portability was verified
for three workstation platforms: Sun Solaris 5.7 (SPARC or Intel CPUs, using gcc), HP 9000
Series 700 HP-UX 9.05 or 10.20 (using gcc), and Silicon Graphics. On Silicon Graphics sys-
tems, the standard cc compiler was used.

The tools of the STL2005 were compiled and tested with a Windows environment using MS
Visual C++ 6.0. The new tools and the revised portions of the STL2009 were compiled and
tested with a Windows environment using MS Visual C++ 8.0, and in Cygwin with gcc (version
3.4.4).

1.1 Organization of the Software Library

Each tool of the STL has been produced as a stand-alone module, such that it may be linked
to a user’s program, application or system. In the present version, there are several of these
modules:

1. G.711: The 64 kbit/s PCM algorithm with A and yu law of ITU-T Rec. G.711.

2. G.711-PLC: The high-quality, low complexity packet-loss concealment spec-
ified in ITU-T Rec. G.711 Appendix 1.

3. G.726: 40, 32, 24, and 16 kbit/s ADPCM algorithm of ITU-T Rec. G.726.

4. G.727: 40, 32, 24, and 16 kbit/s embedded ADPCM algorithm of ITU-T Rec.
G.727.

5. G.728: Low-delay CELP algorithm at 16 kbit/s of ITU-T Rec. G.728 (new in
STL2009).

6. G.722: 64, 56, and 48 kbit/s wideband speech ADPCM algorithm of ITU-T
Rec. G.722 (revised in STL2009).

7. RPE-LTP: The 13 kbit/s RPE-LTP algorithm of the full-rate GSM system
(GSM Rec. 06.10).

8. RATE-CHANGE: An up- and down-sampling algorithm with embedded fil-
tering:
o ITU-T Rec. G.712 filter for factors of 1:2, 2:1 and 1:1
e High-quality filter for factors 1:2, 2:1, 1:3, and 3:1

e IRS send-side weighting filter, for several sampling rates: 8, 16, and 48
kHz. This includes the “full-IRS” as in ITU-T Rec. P48 as well as the
“modified” IRS as in Annex D of ITU-T Rec. P.830.

e Modified-IRS receive-side filter is also available for 8 and 16 kHz sam-
pled data.

o Ay weighting filter for near-to-far field conversion

www.cygnus.com

Version: November 30, 2009 3

e Psophometric weighting filter of ITU-T Rec. O.41 for noise measure-
ments

e ITU-T P.341 weighting filter for wideband signal (50-7000 Hz)

e 100-5000 Hz bandpass filter

e 50-14000 Hz bandpass filter (P341 extension for super-wideband signal)
e 20-20000 Hz bandpass filter (new in STL2009)

e MUSHRA anchors (1.5 kHz, 3.5 kHz, 7 kHz, 10 kHz, 12 kHz and 14 kHz
low-pass filters) (new in STL2009).

9. EID: Error insertion algorithm, with routines for generation of bit error pat-
terns (random or burst) as well as random and burst frame erasure, and adap-
tation to layered bitstream (revised in STL2009).

10. MNRU: The modulated noise reference unit of ITU-T Rec. P.810 (formerly
ITU-T Rec. P.81).

11. SVP56: The Speech Voltmeter for measuring the active speech level (which
skips over silence in a utterance) of ITU-T Rec. P.56.

12. REVERB: Tool to add reverberation to both mono and stereo speech and
audio (revised in STL2009).

13. TRUNCATE: Bitstream truncation tool.
14. FREQRESP: Frequency response measurement tool (revised in STL2009).
15. STEREOQP: Stereo processing tool (new in STL2009).

16. BASOP: The set of basic digital signal processing (DSP) operators that rep-
resent the set of instructions typically available in digital signal processors
(revised in STL2009, added new basic-operator counters for program ROM
estimation, and floating-point complexity counter).

17. UTILITIES: Tools that have been developed to assure proper interfacing be-
tween the various tools. These tools do not relate to any ITU-T Recommen-
dation. Included are tools for conversion between float and short data repre-
sentations, between parallel and serial (bit-stream) formats, and for scaling of
data.

It should be noted that C code is available for a number of codecs as a normative part of the
respective standards, e.g. ITU-T G.711.0, G.711.1, G.718, G.719, G.722.1, G.722.2, G.723.1,
G.729, G.729.1, enhanced aacPlus general audio codec; ETSI GSM-HR, GSM-EFR, GSM-
AMR; TIA 1S-641, IS-127, IS-96A, among others. These source codes are not appropriate
for inclusion in the ITU-T STL for a number of reasons: they are an integral part of the re-
spective standards, are maintained within the scope of the respective standards development
organizations (SDOs), are protected by copyrights, and are openly available. Parties interested
in acquiring these source codes should contact the appropriate SDO.

1.2 Whom to contact

In case of problems with any of the tools, please contact the ITU-T Study Group 16 secre-
tariat at <tsbsgl16@itu.int>. Please provide a precise description of the problem with proper
reference to the C-code, and possible solution(s), if known.

4 ITU-T Software Tool Library, release 2009

1.3 Acknowledgements

Several organizations which participate in ITU-T Study Groups 12, 15 and 16 have substantially
contributed to the completion of this release of the ITU-T STL.

First and foremost, UGST wishes to thank CPqD/Telebras (Brazil) for its support of the early
coordination (1990-1993) of the activity and of the development of the following tools: Utilities,
G.711, G.726, MNRU, and SVP56. For the first two, the work was shared with PKI (Germany),
which also provided the initial version of the modules EID and RATE-CHANGE, as well as ba-
sic material that supported the initial organization of the work, together with Telenor (formerly
NTA, Norway) and the DBP-Telekom (Germany). DBP-Telekom also collaborated in providing
several software tools used in the Host Laboratory for the ITU-T 8 kbit/s speech coder: modi-
fied IRS filters, adaptation of the Bellcore burst frame erasure model, and Ag, filter. UGST also
wants to thank CSELT (Italy) for making available its Fortran MNRU program, which was the
starting point of the present implementation, and for the implementation of the psophometric
filter. CNET (France) provided the G.722 tool, which was greatly appreciated. UGST kindly
thanks Mr. Jutta Deneger for allowing the incorporation of his implementation of the RPE-LTP
algorithm in the STL. Also, Bellcore provided several programs in Fortran and C that, while
not used directly in the present version of the STL, were important in various stages of the de-
velopment of the Library, especially a version of the Red Book G.721. PTT Ukraine graciously
provided the G.727 implementation, which was warmly welcomed. COMSAT Labs (now part
of Lockheed Martin Global Telecommunications, LMGT), in turn, provided essential help in
funding the recent coordination work (1994-current), and the harmonization and documentation
of the tools. Also important was the testing work done by the Research Institute of the Deutsche
Telekom (now T-Nova/DT), as well as PKI, Telebras, AT&T (USA), and CNET.

Several parts of this manual were possible only by the contribution of several individuals:
Mr. Pierre Combescure (CNET) for the description of the G.722 algorithm, Mr. Rudolf Hof-
mann (PKI), for description the Gilbert-Elliot channel implemented in the EID module, Mr. Pe-
ter Kroon (AT&T) for the description of the RPE-LTP algorithm, and Mr. Vijay Varma (Bell-
core) for the text describing the Bellcore Burst Error Model.

Since 2003, several companies have jointly worked on the Basic Operators revision and an
alternative set addition: Texas Instruments, Conexant Systems, STMicroelectronics, Hughes
Software Systems, France Telecom, and VoiceAge. Besides this work on Basic Operators,
ITU-T Q.7/12 and Q.10/16 experts work on the addition of new tools. France Telecom and
Polycom have provided essential contributions in these STL2005 works. Special thanks to ITU-
T Q.7/12 rapporteurs, Mr. Paolo Usai (ETSI) and Ms. Catherine Quinquis (France Telecom),
ITU-T Q.10/16 STL work moderators (2004-2008), Mr. Karim Djafarian (Texas Instruments)
and Mr. Stéphane Ragot (France Telecom). France Telecom also provided great support for the
management of Q.10/16, responsible for the up-keeping of the STL since 2002.

The following persons have contributed to the 2005 edition of this manual: Mr. Karim Djafarian
(Texas Instruments) to the edition of the Basic Operators chapter, Mr. Claude Marro (France
Telecom) to the chapter on the reverberation tool, Mr. Cyril Guillaumé (on behalf of France
Telecom) to chapters on the frequency response measurement tool and the bitstream truncation
tool, Mr. David Kapilow (AT&T) to the chapter of G.711 PLC.

For the release of STL2009, EID-EV tool and new 20 Hz to 20 kHz bandpass filter were pre-
pared by Mr. Jonas Svedberg (Ericsson). The revision of G.722 tool to introduce basic PLC op-
tions, G.192 bitstream and basic operators was performed by Mr. Jonas Svedberg (Ericsson) and
Mr. Balazs Kovesi (France Telecom Orange). The stereo measured impulse responses for the

Version: November 30, 2009 5

reverberation tool were provided by Mr. David Virette and Mr. Claude Marro (France Telecom
Orange) while the simulated fullband impulse response was provided by Mr. Minjie Xie (Poly-
com). Thanks goes to Mr. Balazs Kovesi (France Telecom Orange) for developing the program
ROM evaluation counters and to Mr. Tommy Vaillancourt, Mr. Vaclav Eksler, and Mr. Vladimir
Malenovsky (VoiceAge) for introducing floating-point complexity counters. For the new anchor
12 kHz low-pass filters, there was a contribution from Mr. Miao Lei (Huawei Technologies).
Special thanks to Mr. Hans Gierlich, ITU-T Q.6/12 Rapporteur, for providing the guidelines
on test signals suitable for the frequency response measurement tool. Revision of frequency
response measurement tool was performed by Mr. Pierre Berthet (on behalf of France Tele-
com Orange) and Mr. Deming Zhang (Huawei Technologies). The G.728 C-source code both
in fixed- and floating-point arithmetics was kindly provided by Mr. David Kapilow (AT&T).
Some useful examples were added on usage of basic operators and Mr. Noboru Harada (NTT)
and Mr. Karim Djafarian (Texas Instruments) should be thanked for this work. Mr. Adrien
Cormier (France Telecom Orange) reviewed STL manual chapters and tools. Mr. Xu Jianfeng
(Huaweti) should also be thanked for his assistance in compilation of the new STL2009 tool
packages. Last but not least, it should be mentioned that this release was only possible owing
greatly to Ms. Claude Lamblin (France Telecom Orange), ex-Q.10/16 Rapporteur and WP3/16
Chair. She has devoted a lot of time revising the manual text for STL2009 release, and above
all, took all the responsibility in releasing STL2005.

Above all, special thank goes to ITU-T SG16 Counselor Mr. Simdo Ferraz de Campos Neto,
the “father” of the STL.

ITU-T Software Tool Library, release 2009

Chapter 2

Tutorial

2.1 Acronyms

Several acronyms are used in this text. The most relevant are:

ANSI
BBER ...
BER
BFER ...
DAT

R&O
SQOEG ...
PLC
STL92 ...
STLY ...
STL2000
STL2005
STL2009
UGST ...

American National Standards Institute.
Burst Bit Error Rate

Bit Error Rate (refers to random bit errors)
Burst Frame Erasure Rate

Digital Audio Tape.

Error insertion device.

. European Telecommunications Standards Institute.

Frame Erasure Rate (refers to random frame erasures)

. Global System for Mobile Communications. Pan-European digital-cellular system

operating at a net rate of 13 kbit/s in its full-rate system.

Intermediate Reference System, defined in ITU-T Rec. P.48 for the so-called “full-
IRS” mask, or in Annex D of ITU-T Rec. P.830 for the so-called “modified” IRS
mask.

International Telecommunication Union.

. Standardisation Sector of the International Telecommunication Union.

Least significant bit.

Modified-IRS telephony speech weighting (in ITU-T Rec. P.830 Annex D).
Most significant bit.

Public Switched Telecommunication Network.

Requirements and Objectives, for performance of software tools.
Speech Quality Experts Group, of Study Group 12 of the ITU-T.
Packet loss concealment

ITU-T Software Tools Library, release 1992.

ITU-T Software Tools Library, release 1996.

ITU-T Software Tools Library, release 2000.

ITU-T Software Tools Library, release 2005.

ITU-T Software Tools Library, release 2009.

Users’ Group on Software Tools, of Study Group 16 of the ITU-T.

8 ITU-T Software Tool Library, release 2009

2.2 Definition of terms

In the documentation of the ITU-T software tools, several terms are widely used and are defined
below.

2.2.1 Overload point

The overload point within the digital domain is defined by the (normalized) amplitude value.

A
x_over = 1.0

How this overload point relates to the analogue world depends on the conversion method be-
tween the analog and digital domains, and is beyond the scope of this document. All signals in
this manual are relative to this overload point in the digital domain.

NOTE: This overload point does NOT depend on the quantisation method used and remains
identical, regardless of whether the quantisation is done e.g. with 32, 16, 13 or 8 bits.

1. In floating-point (either single or double precision) implemntations, the representation of
this value is exact. In this text, and also in the tools, this data type is called float.

2. In 32 bit 2’s complement representation the data can be represented by multiplying the
normalized value by 2*!. For example, the largest possible positive value is represented
by 0x7FFFFFFF. The largest negative value is represented by 0x80000000. In this text,
and also in the tools, this data type is called long.

3. In 16 bit 2’s complement representation the data can be represented by multiplying the
normalized value by 2'°. For example, the largest possible positive value is represented
by 0x7FFF. The largest negative value is represented by 0x8000. In this text, and also in
the tools, this data type is called short.

4. The statements above may be generalized for all wordlengths in fixed-point representa-
tion. The idea is to set the decimal point just after the MSb (sign bit).

2.2.2 Signal power

The power of a signal x(n) with a length of N samples is defined by

N-1

P= %Zx(n)2

n=0

A signal which does not contain amplitude values exceeding the overload point can have a
maximum signal power of 1.0. This is the power of a DC signal with an amplitude of 1.0 or of
any other signal comprising only the values + 1.0 (e.g., a square wave signal).

Version: November 30, 2009 9

2.2.3 Signal level

The power level in decibels is defined relative to a reference power level Py = 1.0:

L =10log,,(P/Py) (dBov)

The level of a signal power P = 1.0 is thus 0 dBov (where the characters “ov” arbitrarily mean
digital overload signal level), which is chosen to be the reference level. A signal with such
power level could be either (a) a sequence of maximum positive numbers (+1), (b) a sequence
of maximum negative numbers (—1), or (c) a rectangular function exercising only the positive
or negative maximum numbers (+1). The level of a sinewave with an amplitude (peak value) of
1.0 is therefore L = —3.01 dBov.

2.2.4 Relation between overload and maximum levels

The measurement of signal levels in the digital part of the network is normally expressed by
telecommunications engineers as y dBmO0, i.e., the level relative to 1 mW in 600€Q2. However,
from the software point of view, it is more convenient to represent levels relative to the max-
imum power that can be stored in integer format on a computer, e.g. z dBov. A conversion
between both representations can be expressed as:

y (dBm0) = z (dBov) + C

For the G.711 encoding rule, a sinewave which exercises the maximum level has a power Tmax
of 3.14 dBmO for A-law, and of 3.17 dBmO for u-law. On the other hand, the RMS level of
these sinewaves would always be -3.01 dBov. Therefore, C above becomes 6.15 dB for A-law
and 6.18 dB for u-law. For the G.722 wideband coding algorithm, the overload point of the A/D
and D/A converters should be 9 dBm0. Therefore, in that case, C becomes 12.01 dB.

The following relationships summarize the discussion:

A4(dBmO) = Lyy(dBov) + 6.15dB(A-law)

A,(dBmO) = Loy(dBov) + 6.18dB(u-law)

Ayp(dBmO) = Loy(dBov) + 12.01dB(G.722)

2.2.5 Saturation

Saturation is the limitation of signal amplitudes to values equal to or smaller than the overload
point:

10 ITU-T Software Tool Library, release 2009

-1.0, if x(k) < -1.0
y(k) =< x(k), if-1.0<x(k)<+1.0
+1.0, if x(k) > +1.0

2.2.6 Data representation

Unless otherwise noted all waveforms within the signal processing are assumed to have in-
finite precision and unlimited amplitude. The overload point is therefore the reference point
only. In practice these signals may well be represented in 32 bit floating-point arithmetic or
high precision integer arithmetic (24 bit for data and coeflicients, 48 to 56 bit for products and
accumulation). In most cases, 16 or 32 bit integer arithmetic is not precise enough.

Signals derived from 16 bit 2’s complement representation (DAT, files, digital I/O interface)
should be converted to this (approximately) infinite precision before processing by modules
that require floating-point input. Normalization of the floating-point values to the overload
point is recommended.

2.2.7 Data justification

Justification of data here is used without distinction to data alignment and data adjustment:
where the upper or lower significant bit of an integer sample is located.

Left-justified data are samples whose most significant bit is located at the leftmost position of
the computer storage unit used for it. Remaining low-bit positions must be set to zero.

Right-justified data are samples whose least significant bit is located at the rightmost position of
the computer storage unit used for it. Remaining upper bits depend on the data representation:
if two’s complement, sign extension from sample’s MSb to storage’s MSb is needed; otherwise,
the upper (unused) bits shall be zeroes.

As an example, suppose a 12-bit resolution, two’s complement sample, to be stored for process-
ing in a short. If left-justified, then a sign bit (the MSb!) is found in bit 15 (the MSb) of the
short that stores it. On the other hand, if right-justified, the LSb will be the bit O of the short,
in this case. If it is a negative number, there would be sign extension for bit 12 to 15. If it is
an unsigned number, the upper 4 bits (in the example) are all zeros. Figure 2.1 illustrates these
three cases.

Version: November 30, 2009 11

Bit number | 15 | 14 | 13 |12 |11 | 10|98 |7 |6 54|32 |10
Bittype | s | v | Vv | Vv |V]|V | IV|V|IV|V|V|V|X|X|X|X

(a) Left-justified data

Bitnumber | 15 | 14 | 13 |12 |11 |10 |9 |8 |7 |6 |54 (|3 [2|1|0
Bittype | s | s | s | S| V|V | V|V|V|V|V|V|IV|V]|V]|V

(b) Right-justified, sign-extended data

Bit number | 15 |14 |13 |12 |11 | 10|98 |7 |6 54|32 |10
Bittype | 0| 0 | O] O | v |V V| V|V | V| V|V|V|V]|V]|V

(c) Right-justified, unsigned data

Figure 2.1: TIllustration of a left- and right-justified data with 12-bit resolution. Bit
types s, v, and x represent respectively sign bit(s), valid bits and unused bits.

2.2.8 Equivalent results

Several software tools, such as the G.711 algorithm, are defined in terms of precise fixed-point
operations. Therefore, when comparing the output of one of these algorithms on different plat-
forms, or for compilation using different C compilers, one should expect identical sample values
for reference processed materials.

Other algorithms, however, may include highly intensive processing, or complex mathematical
functions. Examples of these are rate change filters and floating-point arithmetic speech coders,
such as the 16 kbit/s LD-CELP of ITU-T Rec. G.728. In such cases, it is expected that the
processing of the same reference material on different platforms will generate almost identical
results. The generated files will probably be identical for most of the samples, and for some
samples they will differ by a small amount, e.g. +1, or more rarely by +2 or more. For the
purposes of the STL, such an implementation is said to produce equivalent results on different
platforms.

2.2.9 Little- and big-endian data ordering

Present computer systems agree only on the data access for byte-oriented data structures. Al-
though computer systems exist whose bytes do not have 8-bits, the majority of the systems
implement bytes as 8-bit data structures. In general, the computer architectures do not differ in
the way they access the bit-order within a byte. In other words, for the vast majority of the com-
puter systems existing today, the least significant bit occupies the lower memory position (i.e.,
bit 0), and the most significant bit occupies the higher memory position in the byte (i.e., bit 7).
In terms of C operations, if b is a byte structure, then b&®x1 returns the LSb, and (b>>7)&0x1
returns the MSb.

Although most computer architectures agree on the definition of a byte and how its bits are ac-
cessed, they vastly differ on how multi-byte structures are accessed. Trivial examples of multi-
byte structures are 16-bit short words or 32-bit long words. There are currently two access
means currently implemented by different CPUs in the market, which differ on the significance

12 ITU-T Software Tool Library, release 2009

Table 2.1: Example of big- and little-endian systems

Big-endian Little-endian
Computer Microprocessor Computer Microprocessor
Sun-3 Motorola 680x0 || IBM-PC/compatible'® Intel x86
Sun-4 Sun SPARC family DEC-Stations MIPS RISC
Silicon Graphics MIPS RISC DEC Alpha DEC Alpha AXP
IBM 370 IBM VAX-/VMS- VAX CPU
HP 9000-700 HPPA RISC Microcomputers
Legend: CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer
Note: (a) Includes Windows 9x/NT/2000/XP/Vista/7, Linux and
Solaris on Intel CPUs.

of the bytes that are first read from memory positions.

On the so-called big-endian systems, the first byte read from a multi-byte structure is always the
most significant byte. For example, if the two bytes 0x12 (low address) and 0x34 (high address)
are stored in two consecutive memory addresses, then the number read and stored in the CPU
accumulator would be 0x3412, or 13330 in decimal. The big-endian data organization is, for
this reason, also known as high-byte first.

For the so-called little-endian systems, the first byte read from a multi-byte structure is always
the least significant byte. For this reason, the little-endian data organization is also known as
low-byte first. Using the same example as before, for the two consecutive bytes in memory
0x12 and 0x34, the value loaded on a little-endian CPU will be 0x1234, or 4660 in decimal.

The concept is extended to other multi-byte data structures, such as 32-bit or 64-bit integers.
For example, the consecutive bytes 0x12, 0x34, 0x56, and 0x78 would be loaded as the 32-
bit integer 0x78563412 on the accumulator of a big-endian CPU and as 0x12345678 on the
accumulator of a little-endian CPU.

Table 2.1 indicates the data organization for several computer platforms. It should be noted
that the data organization is a function of the CPU family rather than of the operating system
used. For example, Solaris on Sparc platforms uses big-endian data organization, while Solaris
on Intel 80x86/Pentium platforms uses little-endian data organization. Similarly, most Linux
systems are little-endian (because they run on Intel 80x86/Pentium CPUs), but several other
implementations are actually big-endian (e.g. PowerPC CPU used in Macintosh machines).

The segment of C code in figure 2.2 can be used to determine whether a given computer system
has big- or little-endian data organization.

The approach above determines whether a platform is big- or little-endian, but it does not an-
swer the question of what is the byte orientation in a given file. Although there is no closed-
form method for such a determination, there is an empirical method that can be carefully used
for speech signals (usually represented using 16-bit linear PCM words) based on two speech
properties: speech signals follow a gamma distribution (hence most of the samples have small
amplitude), and levels in voiced segments are usually in the —15 dBov through —40 dBov range.
For files that have a byte orientation mismatching that of the computer platform, the mostly
small samples of the speech signal will be measured as having large amplitude. Hence, if a
high-level power is found when measuring the power of a voiced segment (typically around
—4 dBov), one can assume that the file needs to be byte-swapped. It is important however to

Version: November 30, 2009 13

#include <stdio.h>
#include <string.h>

int is_little_endian()

{
/% Hex version of the string ABCD */
unsigned long tmp = 0x41424344;

/* Compare the hex version of the four characters with the ASCII version */
/% On big-endian (or high-byte-first) systems, 0x41 (’A’ in ASCII) */
/% is stored in the first memory position, and the equivalent string */
/% is "ABCD". On a little-endian (or low-byte-first) system, 0x41 is */
/* stored in the last position, and the equivalent string will be */
/* "DCBA". Function strncmp will return 0 if both strings are equal */
/% upto the first four characters. */
return(strncmp ("ABCD", (char *)&tmp, 4));
}

void main()

{
printf("System is %s-endian\n", is_little_endian()? "little" : "big");

}

Figure 2.2: Sample code for determination of byte organization.

measure the level for voiced segments, since for silent intervals the increase in gain is not so
dramatic and will not allow for a conclusion on the byte-orientation of the file.

When the change of format is necessary for short and long data, the operations in figure
2.3 should be used. The conversion between big- and little-endian data representation for 16-bit
data is simple and is known as byte swapping. The byte swapping operation can be implemented
in several fashions. For example,

short swap_one_short(short in)

{
return (((in>>8)&OxFF) | (in<<8));

}

It should be noted that the simple byte-swapping above does not work properly for conversion
of other multi-byte structures. For the purposes of the STL, however, 16-bit structures is the
most import case. For several of the STL modules, the provided test files in general need to
be byte swapped in one or another computer platform. The documentation and the “manifesto”
accompaining each software tool module describe which files, if any, should be byte-swapped
on certain platforms. As default, binary files organized in 16-bit words are provided in big
endian format in the STL distribution.

2.3 Guidelines for software tool development

14

ITU-T Software Tool Library, release 2009

7 8 15 16 23 24 31 0 7 8 15

Byte 1 Byte 2 Byte 3 Byte 4 Byte 1 Byte 2
Byte 1 Byte 2 Byte 3 Byte 4 Byte 1 Byte 2
24 31 16 23 8 15 0 7 8 15 0 7
(a) Conversion between little— and big—endian for 32—-bit data (b) Conversion between little— and big—endian for 16-bit data

Figure 2.3: Conversion between big- and little-endian

The software tools provided by the ITU-T User’s Group on Software Tools are to be used by
laboratories with different computers and A/D-D/A equipment. To make the software acces-
sible to everybody, it should be highly portable across operating systems and allow for easy
implementation in existing hardware environments.

To achieve this, some simple guidelines were followed in the development of the tools. The
following are the UGST guidelines used to generate the official and beta releases of the ITU-T
Software Tool Library.

ii.

1il.

1v.

Vi.

Vil.

viil.

. All software should be written in ANSI C.

Features of the language whose representation may create side-effects should not be used
(e.g. union).

All variables must be declared and the types used in the declarations must be the least plat-
form dependent. For example, the keyword int must be avoided. Instead short should
be used for 16-bit integers and 1long should be used for 32-bit integers.

The software should not contain any input or output that may be system dependent (e.g.
open, read and write file operations). Instead, data must be passed to the modules as
parameters of function calls. This will allow each laboratory to integrate the modules
with their own application software without changing the modules. Interfaces to various
file formats and user interaction can optionally be provided as example main programs'
that will not be a part of the library module and should contain the least possible amount
of code.

Well defined digital signal formats should be used and documented for each module to
allow the various modules to work together.

The interface to the file system should be made in a standard way, but only within the
example programs.

The source code should be properly documented, with a standard header.

Modularity is encouraged in the software design. All modules are self-contained, i.e.
global definitions should be avoided.

'Also called “demonstration programs” in this manual.

Version: November 30, 2009 15

ix. Each module should have an attached specification document explaining the function and
use of the module, the level of detail depending on its complexity.

x. The software modules shall be distributed to interested laboratories for comments and
testing before they are approved and included in the ITU-T Software Tools Library, to
minimize the ocurrence of bugs and to assure conformance with related ITU-T Recom-
mendations (when applicable). Two test procedures have been devised: compliance and
portability.

The compliance procedure (or compliance test) is to certify that a given tool module fully com-
plies with specifications, which should be carried out by at least one organization other than the
proponent organization (or by a group of organizations, each one checking a different subset of
the specifications, such that all together cover all the specifications). In order to minimize the
probability of systematic errors, these procedures should be defined by the verifying organiza-
tion(s) without input from the tool provider(s).

The portability verification procedure (or portability test) is to certify that a given validated tool
works on platforms other than the one(s) where they were generated and validated. In simple
cases these verification procedures could be just test vectors (e.g. speech or noise files). It
was also pointed out that problems may arise in Unix platforms, due to the existence of several
flavors of Unix available today (this means that a verification procedure could be valid in one
Unix machine, but not in other).

Portability verification procedures should be provided by the proponents and shall be run on
at least two relevant operating systems (DOS, UNIX). In the past, procedures for the VMS
operating system used to be required, however this operating system has become less common.
For DOS, the “pure” 16-bit mode has become less common, and 16-bit emulation window under
a 32-bit version of MS Windows is now prevalent. These facts affect the choice of compiler.

The following is a list of compilers used to test the portability of tools in the STL, although not
all tools were necessarily tested with all compilers.

HP/c89 . This is the c89 compiler that can be purchased from HP for use in HP-UX sys-
tems. For the STL, tests with this compiler were performed with HP-UX 9.05.

HP/gcc . This is the HP-UX port of the gcc compiler. The specific version may differ from
tool to tool. Versions used included gec 2.7.2.2 for HP-UX 9.05 and gcc-2.95.2
for HP-UX 10.20.

MSDOS/gcc . This is the MSDOS-6.22 port of the gcc compiler version 2.6.3-DJGPP V1. This
is a 32-bit compilation of the code, however using a 16-bit interface. Executa-
bles are not likely to run under Windows MS-DOS emulation window. Needs a
run-time 32-bit extender called go32. exe.

MSDOS/tcc . This is the Borland Turbo C++ Version 1.00 tcc compiler.

MSDOS/bcce . This is Borland C++ bcc compiler. Versions used included 3.0 and 4.5.

Solaris/gcc . This is the gcc compiler version 2.95 running under Solaris 7, usually in a Sparc
platform.

16

SunOS/cc

SunOSjacc

Win32/gcc

Win32/cl

ITU-T Software Tool Library, release 2009

. This is the basic cc C compiler bundled in the SunOS distribution. For the STL,
SunOS version 4.1.3 was used.

. This is the licensed acc C compiler sold by Sun Microsystems. For the STL,
SunOS version 4.1 was used.

. This is the gcc compiler version 2.95 running under Windows NT 4 SP 4 and
with the CYGWIN Unix emulation interface. These executables need either the
CYGWIN environment or the run-time library cygwinl.dll to run, and they are
expected to work properly in a DOS emulation window under Windows 95/98 as
well. This version will not run under native MS-DOS.

. This is the command-line c1 version 12.00.8168 C compiler of the MS Visual C
V.6 SP3 running under the WinNT 4 SP4 (the executables will also run in Win-
dows 95/98/SE/Me/2000). This version will not run under native MS-DOS.

2.4 Software module I/O signal representation

The idea behind the choice of the convention in this section is that all software modules within
the ITU-T tool library should be independent building blocks which can easily be combined
by connecting the output of one module to the input of the next module. With this character-
istic, various systems may be very easily constructed. The individual software modules must
have well-defined interfaces to allow such simple connections, especially at the I/O level. This
convention is based on the following:

1. All modules work ‘from RAM to RAM’. This means that the working modules are in-
dependent from physical I/O functions which are normally machine dependent. This
approach also allows easy cascading of modules within one ‘main’ program.

2. All signals at the I/O interfaces of modules are represented in one of the following ways:

(a)

(b)

(c)

in single or double precision (32 or 64 bit) floating-point representation. The nor-
malized signal is used directly (overload point = reference point = 1.0)

in 32 bit 2’s complement representation. The normalized signal must be multiplied
by 2! (i.e. the decimal point is just after the MSb, same as for 16 bit representation).
If less than 32 bits are required, then the signal is left adjusted within the 32 bit
longword and the LSbs are optionally set to O.

in 16 bit 2’s complement representation, as described in section 2.2.1. If less than
16 bits are required, then the signal is left adjusted (left-justified) within the 16 bit
words and the LSbs are optionally set to 0. If the host machine does not provide a
format with 16 bit width, then the next longer wordlength should be used with the
16 bits right adjusted.

3. Data exchange with a module shall be done directly within the calling statement (not by
global variables).

Version: November 30, 2009 17

4. Data exchange with a module shall be done sample-by-sample (FIR-filtering, MNRU,
etc.) or frame-by-frame (block oriented speech codec, etc.), whichever is more conve-
nient. Larger blocks may be formed (e.g. 128 samples at a time) for better efficiency,
however the block size should be rather small (less than 512). The block and its length
shall be variables.

5. All modules shall be constructed in a way that infinitely long signals may be processed
with a reasonable amount of internal storage. As an example, the ‘main’ program could
read a block of input data (e.g., next frame of time signal samples) from the disk, call
a module or sequence of modules, write the output signal (e.g., next frame of coded
parameters) back onto disk. This process is repeated for all the input data blocks of
interest.

6. All modules shall have

(a) an initialization part (if necessary) and
(b) a working part
The initialization part may be necessary to reset internal state variables, define the mode

of operation (e.g. MNRU-mode), and so on. It is called only once at the beginning or
whenever a reset to an initial state is needed.

NOTE: All state variables (if any) must be initialized at execution time, not at com-
pile or load time.

The working part performs the processing itself. It leaves all state variables in a well-
defined manner for the immediate use within the next call. One possible way to do this is
to introduce a flag-variable within the call statement (e.g., named ‘Initialize’) which is set
by the ‘main’ program to ’1’ for initialization and is set to 0’ during normal operation.
In this way, only one function for one module is necessary. Alternatively, a specialized
initialization routine may be written, to be called before the main processing routine of
the module. Only one of the approaches will be followed in the future. However, both are
present in the current version of the STL.

7. The RAM allocation shall in principle be split into ’static’ and "temporary’ parts. ‘Static’
means that the contents must be saved from call to call, preferrably by means of state
variables rather than truly static variables?. ‘Temporary’ means that the contents are not
saved between sucessive calls of the module.

8. All modules are separated in clearly and independently defined functions, but accompa-
nied by an example ‘main’ program which may also include file I/O.

2.5 Tool specifications

For each tool, there are ‘Requirements and Objectives’ (R&Os) associated. Each of the R&Os has
both a general and a specific part.

The general part includes the following?:

2As a rule, state variables should not be defined as truly static ones because this may cause side-effects.
3GLx refers to the Guideline number x in section 2.3, e.g., GLiii is the Guideline iii.

18 ITU-T Software Tool Library, release 2009

1. Portability among platforms and Operating Systems (DOS, UNIX, and VMS):
e compilation [GL-i];
e usage of language features that may cause side-effects [GL-ii];

e usage of language features that may be ambiguous among platforms [GL-
ii];

e usage of system dependent calls (to access resources such as files, etc.
within the modules) [GL-iv];

2. Efficiency:

e use of CPU (i.e., execution speed);
e use of I/O (intensity of access to files, etc.);
e use of memory (physical/virtual);

e code’s coverage (verbosity versus laconism);
3. Documentation:

e Self-documentation (e.g., comments, variables and structure resembling
ITU-T Recommendations, etc.)[GL-vii];

e Separate documentation (clarity, objectivity, etc.)[GL-ix];
4. Modularity [GL-viii]

5. Fixed- versus floating-point implementations;

Following are descriptions of each of the General R&Os. Full description of the R&Os can be
found in [2, Annex 4].

General performance specification refers to the document that specifies the tool in question,
e.g. an ITU-T recommendation or ANSI or ETSI standard.

Portability addresses several points related to the tool’s capacity of working on several plat-
forms: Compilation and linkage refers to the necessity of changes in the source code to make
a tool compile without any modification in a given environment. It was identified that the op-
erating systems of most interest are DOS and Unix (both BSD and System V). Side-effectable
features are those that, if used in a program, when changing one parameter, may cause other(s)
to be changed implicitly. Ambiguous features are those that, due to the flexibility left in the C
language specification, are implemented in different ways for different platforms. For example,
int in C is 32-bit wide in VAX-C and Unix workstations, but is 16-bit wide for most compilers
available on MS-DOS (Turbo-C/MS-C). System-dependent calls are calls that are restricted to
or are implementation of features of a particular platform, to make better use of that particular
computer architecture.

Efficiency is related to how the computer’s resources are used in terms of CPU, I/O and memory
allocation, that may be a burden and prevent the usage in some systems, either by lack of
resources or length of time needed for execution. Efficiency also includes code’s coverage,
expressing how frequently code is accessed.

Documentation refers to how to describe the tool. Self-documentation is the documentation
present in the program itself to assure that the code clearly describes the algorithm implemented,
to provide compilation and linkage instructions, as well as to report known bugs, etc. A separate
document will be mandatory when no written description of the algorithm is available, or when
the written documents that specify the tool are too general.

Version: November 30, 2009 19

Modularity degree is the degree of isolation that a particular tool has. From UGST Guidelines,
all tools must be modular, i.e., self-contained blocks; nonetheless, tools may make use of system
resources other than memory and CPU.

Arithmetic is the number representation specification, either in fixed (2’s complement, 1’s com-
plement, etc.) or floating point. Here, “fixed-point” shall always be understood as 2’s comple-
ment representation, except where otherwise indicated.

20

ITU-T Software Tool Library, release 2009

Chapter 3

G.711: The ITU-T 64 kbit/s log-PCM
algorithm

In the early 1960’s an interest was expressed in encoding the analog signals in telephone net-
works, mainly to reduce costs in switching and multiplexing equipments and to allow the in-
tegration of communication and computing, increasing the efficiency in operation and mainte-
nance [3].

In 1972, the then CCITT published the Recommendation G.711 that constitutes the principal
reference as far as transmission systems are concerned [4]. The basic principle of the algorithm
is to code speech using 8 bits per sample, the input voiceband signal being sampled at 8 kHz,
keeping the telephony bandwidth of 300-3400 Hz. With this combination, each voice channel
requires 64 kbit/s.

3.1 Description of the algorithm

The idea behind the digitalization of the network involved a compromise: use as far as possible
the existing infrastructure; this imposes a bandwidth limitation for the bit-streams of coded
signals. A rate of 64 kbit/s was found to be reasonable.

If one thinks of using the most natural quantization scheme, one will choose linear quantiza-
tion. But one drawback of this approach is that the signal-to-noise ratio (SNR) varies with the
amplitude of the input signals: the smaller the amplitude, the smaller the SNR. And, from the
quality point of view, if a signal has a wide variance, or a variance that changes with time (as in
the case of speech signals), the SNR will also change, resulting in a wide-varying quality of the
system.

To avoid this problem, one can use logarithmic quantization, which will result into a more
uniform quantization noise. With this in mind, several studies were carried out in late 1960’s
to choose a good algorithm for this purpose. This led to the definition of two transmission
schemes, one using the y law compression characteristic:

_ . Indd + plx]/ Xpar)
c(X) = Xiax (1 + 1) sgn(x)

21

22 ITU-T Software Tool Library, release 2009

and the other using the A law compression characteristic:

Alx| |x] 1
o Tn(A)sgn(x), for0 < Yo S A
c(x) =
1 +In(A max
Xmax lni llrf(ll/;;)sgn(x), for% < xl,ﬁ,x <1

Both characteristics behave as linear for small amplitude signals (being then equivalent to a
linear quantization scheme), but are truly logarithmic for large signals. In fact, for large signals
the SNR is:

SNR, = 6.02B + 4.77 — 201og,,(In(1 + u))

and
SNR4 = 6.02B +4.77 — 201og,,(1 + InA)

where B is the number of bits used for quantization.

The ITU chose the values A = 87.56 and p = 255 for the G.711 standard, together with 8 bits
per sample, what leads the latter two equations to:

SNR, = 6.02B - 9.99 = 38.17dB

and
SNR, = 6.02B — 10.1 = 38.06dB

The G.711 standard does not specify the law as defined above, but rather uses a good linear-
piecewise approximation for 8 bit samples, which has easier implementation (in hardware), as
well as other properties (see [5, p.229]).

This approximation uses bit 1 for sign (1 for positive, O for negative), bits 2—4 to indicate a
segment, and bits 5-8 for level!. Within each segment, the quantization is linear (4 bits, or 16
levels), having 15 segments of distinct slopes for u law, and 13 for A law.

The A law works with signals in the range from -4096 to 4096, implying in a range of 13 bits.
As for the u law, the linear signals are accepted in the range -8159 to 8159, which is represented
by 14 bits. Besides this, in the dynamic range sense, A and u law are equivalent to 12 and 13
bit linear quantization, respectively.

One detail for the A law is that the even bits are inverted. The reason for this comes from
problems observed (before the standardization of the line code HDB3) in transmission systems
when long sequences of zeros happen, because small amplitudes, in A law, to be coded mostly
using ‘0’ bits. With this bit-inversion, long sequences of bits ‘O’ becomes less probable, thus
improving performance.

The conversion rule for A/u law from/to linear is described in terms of tables in G.711. A good
reason for this is that there is no closed form for the compression of linear samples (although it
is possible to find a closed formulae for the expansion algorithm). Hence, two implementations
are possible: table look-up, and algorithmic. For in-chip (LSI) implementations, the first one
may be preferred, because it is simpler to implement, at the cost of a wider chip area. For other
applications, such as using Digital Signal Processors (DSPs), or software implementations, table
look-up would occupy too much memory, and the algorithmic solution would be preferred.

IPlease note that the bit numbering in the G.711 is the reversal of the commonly used in computer languages,
G.711’s bit 1 corresponding to common-sense’s (most significant) bit 7, and G.711’s bit 8 to the normal least
significant bit 0, respectively.

Version: November 30, 2009 23

3.2 Implementation

This implementation of the G.711 can be found in the module g711.c, with prototypes in
g711.h.

For the reason explained before, an algorithmic approach to the G.711 was followed. For the
compression routines, first the samples are converted from two’s complement to signed magni-
tude notation?. So, a segment classification is done, and then the linear quantization of a certain
number of bits of the input sample, that depends on the segment number (e.g., for A law, seg-
ment 1 uses a factor of 2:1, 2 a 4:1, etc.) is carried out. Finally, the sign of the sample is added.
The expansion routines are even simpler: find the sign, get the mantissa and the exponent, and
compute the linear sample.

One important point here is that, following UGST Guidelines, linear input samples must be
left-justified shorts. With this approach, the knowledge of the 0 dB reference for the file is
simplified, and the need of having to apply different normalization factors to files if they are
to be coded by A or u law is eliminated®. As an example, suppose that we want to process a
speech file X by the G.711 at an input level of -20 dBov for both A and u law. Then, if the
sample representation is right-justified, and a factor f brings a file’s level to -20 dBov for u law,
then for A law the factor will be 2.f, due to the difference in input signal’s dynamic range of
both laws (4096 and 8159, respectively). On the other hand, if the samples are left-justified, the
factor is only one, and the routines will only look at the 13 or 14 most significant bits of the
16-bit word, for A and u law, respectively. In other words, the peak value for linear and A/u
law is the same, therefore one factor is sufficient.

Compliance tests to this code have been done using a ramp file having the full excursion of
the dynamic range for each of the laws, and examining the compressed and expanded samples
against the values expected in tables la, 1b, 2a, and 2b of Recommendation G.711 (see [4]).
Another test done exploits the synchronous property of the G.711 scheme. Only samples from
column 7 of G.711 tables 1 and 2 were used. These values are transparent to quantization.
Hence, if the coding was done properly, output samples should match exactly the original ones.

The compression functions are alaw_compress and ulaw_compress, and the expansion func-
tions are alaw_expand and ulaw_expand. In the next part you find a summary of calls to these
functions.

3.2.1 alaw_compress and ulaw_compress

Syntax:

#include "g711.h"
void alaw_compress (long smpno, short *lin_buf, short *log_buf)
void ulaw_compress (long smpno, short *1in_buf, short *log_buf)

Prototype: g711.h
Description:

alaw_compress performs A law encoding rule according to ITU-T Recommendation G.711,
and ulaw_compress does the same for u law. Note that input samples shall be left-justified,

2Using the samples as two’s complement in the compression algorithm is a very common error whose effects
are only noticeable for small amplitude signals. Our approach agrees to the one in G.726[6], block compress.
3In the case of stand-alone tools, this would mean that two copies of the same file should be available!

24 ITU-T Software Tool Library, release 2009

and that the output samples are right-justified with 8 bits.

Variables:

SMPRO .. Is the number of samples in lin_buf.

linbuf Is the input samples’ buffer; each short sample shall contain lin-
ear PCM (2’s complement, 16-bit wide) samples, left-justified.

log buf Is the output samples’ buffer; each short sample will contain

right-justified 8-bit wide valid A or i law samples.

Return value: None.

3.2.2 alaw_expand and ulaw_expand

Syntax:

#include "g711.h"
void alaw_expand (long smpno, short *log_buf, short *1in_buf)
void alaw_expand (long smpno, short *log_buf, short *1lin_buf)

Prototype: g711.h
Description:

alaw_expand performs A law decoding rule according to ITU-T Recommendation G.711, and
ulaw_expand does the same for u law. Note that output samples will be left-justified, and that
the input samples shall be right-justified with 8 bits.

Variables:

SMpno ... Is the number of samples in log_buf.

log buf Is the input samples’ buffer; each short sample shall contain
right-justified 8-bit wide valid A or u law samples.

linbuf Is the output samples’ buffer; each short sample will contain

linear PCM (2’s complement, 16-bit wide) samples, left-justified.

Return value: None.

3.3 Tests and portability

Portability may be checked by running the same speech file in a proven platform and in a test
platform. Files processed this way should match exactly. Source and processed reference files
for portability tests are provided in the STL distribution.

These routines had portability tested for VAX/VMS with VAX-C and gcc, MS-DOS with Turbo
C v2.0, HPUX with gcc, and Sun-OS with Sun-C.

3.4 Example code

3.4.1 Description of the demonstration program

One program is provided as demonstration program for the G.711 module, g711demo.c.

Version: November 30, 2009 25

Program g711demo. c accepts input files in 16-bit linear PCM format for compression operation
and produces files in the same format after the expansion operation. The compressed signal will
be in 16-bit, right adjusted format, according to the logarithmic law specified by the user. Three
operations are possible: linear in, linear out (/ili) linear in, logarithmic out (/ilo), or logarithmic
in, linear out (loli).

3.4.2 Simple example

The following C code gives an example of companding using either the A- or u-law functions
available in the STL.

#include <stdio.h>
#include "ugstdemo.h"

#include "g711.h"

#define BLK_LEN 256
#define QUIT(m,code) {fprintf(stderr,m); exit((int)code);}

main(argc, argv)

int argc;
char *argvl[];
{
char law[4];
char FileIn[180], FileOut[180];
short tmp_buf[BLK_LEN], inp_buf[BLK_LEN], out_buf[BLK_LEN];
FILE *Fi, *Fo;
void (*compress) (), (*expand)(); /* pointer to a function */

/* Get parameters for processing */

GET_PAR_S(1, "_Law (A,U): .uiiirinrnrnnnnnnns ", law);
GET_PAR_S(2, "_Input File: ", Fileln);
GET_PAR_S(3, "_Output File: ", FileOut);

/¥ Opening input and output LOG-PCM files */
Fi = fopen(FileIn, RB);
Fo = fopen(FileOut, WB);

/* Choose compression/expansion routinies according to the law */
if (toupper(law[0])=="A’)

{
compress = alaw_compress;
expand = alaw_expand;

}

else if (tolower(law[0])=="u’)

{
compress = ulaw_compress;
expand = ulaw_expand;

}

else

QUIT("Bad law chosen!\n",1);

26 ITU-T Software Tool Library, release 2009

/* File processing */
while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)
{
/% Process input linear PCM samples in blocks of length BLK_LEN */
compress (BLK_LEN, inp_buf, tmp_buf);

/* Process log-PCM samples in blocks of length BLK_LEN */
expand (BLK_LEN, tmp_buf, out_buf);

/* Write PCM output word */
fwrite(out_buf, BLK_LEN, BLK_LEN, sizeof(short), Fo);
3

/* Close input and output files */
fclose(Fi);

fclose(Fo);

return 0;

Chapter 4

G.711 Appendix I: A high quality
low-complexity algorithm for packet loss
concealment with G.711.

4.1 Introduction

Packet Loss Concealment (PLC) algorithms hide transmission losses in audio systems where
the input signal is encoded and packetized at a transmitter, sent over a network, and received at
a receiver that decodes the packet and plays out the output. G.711 Appendix I [7], approved by
ITU-T in September 1999, describes a high quality, low complexity PLC algorithm designed
for use with G.711.

4.2 Description of the algorithm

A brief description of the PLC algorithm is given. A more extensive presentation can be found
in Section 1.2, “Algorithm description”, of G.711 Appendix I [7].

The PLC algorithm is inserted after the G.711 decoder at the receiver. The algorithm is designed
to work with 10 ms frames, or 80 samples per frame at 8 KHz sampling. An external mechanism
is needed to signal when packets are lost. Since speech signals are often locally stationary, the
signals recent history is used to generate a reasonable approximation to lost frames. If the losses
are not too long, and do not land in a region where the signal is rapidly changing, the losses
may be inaudible after concealment.

When a frame is received the decoded speech is given to the PLC algorithm. Received frames
are saved in a 48.75 ms circular history buffer, and the output is delayed by 3.75 ms (30 sam-
ples).

When a packet is lost the concealment algorithm starts synthetic signal generation. First the
pitch is estimated by finding the peak of the normalized autocorrelation of the most recent 20
ms of speech in the history buffer with the previous speech at taps from 5 to 15 ms. Using the
pitch estimate, the most recent pitch period from the history buffer is repeated for the duration
of the first lost frame (10 ms). If the pitch estimate is longer than 10 ms, only a portion of
the most recent pitch period will be used in the first lost frame. A 1/4 pitch period overlap

27

28 ITU-T Software Tool Library, release 2009

add (OLA) with a triangular window 1is performed at all repetition boundaries, including the
transition between the last received frame and the start of the synthetic signal.

If consecutive frames are lost, the number of pitch periods used to generate the synthetic signal
is increased by one pitch period at the start of the 2nd and 3rd lost frames. When the number
of pitch periods is increased, the output is smoothly transitioned to the oldest used pitch period
of the history signal with an additional 1/4 pitch period OLA. Increasing the number of pitch
periods reduces the number of unnatural harmonic artifacts in the concealed speech for long
losses. The algorithm does not distinguish between voiced and un-voiced speech and uses the
same procedure for both types of speech.

At the start of the first received frame after a loss, the synthetic signal generation is continued
and OLAed with the received speech. This OLA window length increases with the length of
the loss. For single frame losses it is 1/4 of the estimated pitch period. 4 ms are added for each
additional consecutive lost frame, up to a maximum of 10 ms.

If the loss exceeds 10 ms the synthetic signal is also linearly attenuated at the rate of 20% per
frame. If the loss exceeds 60 ms the synthesized signal is set to silence.

4.3 Implementation

4.3.1 Introduction

The g71l1iplc directory contains an ANSI C implementation of the G.711 Appendix I PLC
algorithm. The C++ version of this algorithm is in the g711iplc\cpp-cod directory. Sample test
programs read lost frame patterns in G.192 file format and apply the PLC algorithm to audio
files. The software in the g711iplc directory is covered by a more restrictive copyright than the
STL. See the copyrght.txt file for details.

4.3.2 PLC Algorithm Implementation

A detailed line by line description of the C++ code can be found in section 1.3 “Algorithm
description with annotated C++ code” of G.711 Appendix I [7] and will not be repeated here.
The public interface functions that are called by applications are covered. The C++ version is in
the g711iplc\cpp-code directory (files lowcfe.h and lowcfe.cc). The ANSI C version, contained
in the files lowcfe.h and lowcfe.c, is a translation of the C++ code to C. The interface functions
are the same for both versions, with the exception that the C versions of the routines take an
extra argument for the data structure that is implicitly passed to C++ member functions in the
class instance data. As for other STL modules, only the ANSI C version is compiled during
STL2005 building.

4.3.2.1 Constructor

C++ syntax:

#include "lowcfe.h"
LowcFE Ic; // No argument constructor

C syntax:

Version: November 30, 2009 29

#include "lowcfe_c.h"
g71l1lplc_construct(LowcFE_c*); /* explicit constructor call */

Description:

Before the PLC algorithm can be called the data structure containing the algorithm’s internal
storage, such as the history buffer and buffer pointers, must be initialized.

4.3.2.2 Received Frames

C++ syntax:

void LowcFE::addtohistory(short *s); /* add a frame to the history buffer
:‘:/

C syntax:
void g711plc_addtohistory(LowcFE_c*, short *s);
Description:

Frames of speech received from the transmitter are given to the PLC algorithm with addtohistory
function. The argument s points to a short array of length FRAMESZ (80 samples, or 10 ms)
that is used as both an input and output. Before the call is made s is filled with the decoded
G.711 data received from the transmitter. On return, it contains the data that is output to the
listener. Addtohistory performs several operations. It stores the input speech into the history
buffer for use in generating the synthetic signal if a loss occurs. If this is the first received frame
after a loss, an OLA is performed with the synthetic signal to insure a smooth transition between
the signals. In addition, it delays the output so an OLA can be performed at the start of a loss.

4.3.2.3 Lost Frames

C++ syntax:

void LowcFE::dofe(short *s); /* synthesize speech during loss */
C syntax:

void g711plc_dofe(LowcFE_c*, short *s);

Description:

If a frame is lost, the dofe routine is called. As with addtohistory, s is a pointer to short
array of FRAMESZ samples. With dofe, s is only an output. The PLC algorithm fills s with the
synthetic signal that conceals the missing frame.

4.3.2.4 Support Functions

error
Syntax:

#include "error.h"
void error(char *s, ...);

Description:

30 ITU-T Software Tool Library, release 2009

Error handles fatal errors in the programs. The pattern string, s, and optional following argu-
ments should be in the format of arguments accepted by the C library printf function. Error
prints its argument message on stderr and then exits the program. The error function never
returns.

readplcmask_open
Syntax:

#include "plcferio.h"
void readplcmask open(readplcmask *r, char *fname);

Description:

The readplcmask_open function opens a G.192 format file containing a packet loss pattern.
fname is the file path. If successfully opened, r contains the state information needed for reading
the patterns. readplcmask_open internally calls the STL eid module to determine the type of
the G.192 file and select an appropriate reading function. If the open fails or an unknown pattern
is detected in the file, function error is called and readpl cmask_open will not return.

readplcmask_erased
Syntax:

#include "plcferio.h"
int readplcmask_erased(readplcmask *r);

Description:

readplcmask_erasedreads the next value from the opened G.192 format pattern file. It returns
1 if the frame is lost and should be concealed and O if the frame is ok. If the end of the G.192
file is reached, the routine seeks back to the beginning of the file and the pattern sequence is
repeated. If an illegal value is found in the G.192 file, the error function is called.

readplcmask_close
Syntax:

#include "plcferio.h"
void readplcmask_close(readplcmask *r)

Description:

readplcmask_close is used to close a G.192 file that was opened with readplcmask_open.

4.3.3 Test Program

4.3.3.1 Test Program Usage

The PLC algorithm is tested using g711iplc.c. The PLC test programs take 3 file arguments:
g711liplc mask.g192 input.raw output.raw

The mask.g192 file contains the lost frame pattern and should be in the G.192 format as spec-
ified in the software tools library. The g192, byte, and compact representations are supported.
The G.192 file should contain only the frame headers words (G192_SYNC or G192_FER, see
softbit.h), and not the data words.

Version: November 30, 2009 31

A frame corresponds to 10 ms, or 80 samples. If the lost frame pattern file is shorter than the
number of frames in the input.raw file, the program will roll-over back to the start of the
pattern file. For example if the mask.g192 file contains the binary data:

0x6B21 0x6B21 0x6B21 0x6B21 0x6B21,
0x6B21 0x6B21 0x6B21 0x6B21 0x6B20

a 10% uniform loss pattern will be applied to the whole file. Erasures will occur at 90-100 ms,
190-200 ms, 290-300 ms ... in the file.

While the algorithm is designed for packets containing 10ms of speech, it can be applied to
packetizations containing speech chunks that are integer multiples of 10ms. For example, for a
10% uniform loss pattern with 20ms packetization one could use:

0x6B21 0x6B21 0x6B21 0x6B21 0x6B21,
0x6B21 0x6B21 0x6B21 0x6B21 0x6B21,
0x6B21 0x6B21 0x6B21 0x6B21 0x6B21,
0x6B21 0x6B21 0x6B21 0x6B20 0x6B20

to cause erasures at 180-200ms, 380-400ms, 580-600ms, etc.

The input audio file, input.raw, should contain header-less 16-bit binary data, sampled at 8
KHz, in the native byte order for the machine running the test programs (big-endian on SPARC
or MIPS, little-endian on Intel). The test programs do not contain the G.711 encoder or decoder.
If you have a G.711 bit-stream, it must be decoded before the g711iplc program is run.

The output audio file, output.raw, also contains header-less 16-bit binary data. The PLC
algorithm delays the output by 3.75 ms. The test programs compensate for this delay by not
outputting the first 3.75 ms of the first packet. This way the input and output files will be time
aligned if they are overlaid in an audio waveform editor. In addition, after the last full packet
is input to the PLC algorithm, an extra zero filled frame is input, and the first 3.75 ms of the
corresponding output frame is sent to the output file. The length of the output file will always
be a multiple of the 10ms frame size. If the input file length is not an integral number of frames
the last partial input frame will be discarded.

The test programs can also simulate a silence insertion algorithm instead of the PLC algorithm
with the -nolplc option:

g71liplc -noplc mask.gl92 input.raw output.raw

Instead of calling the concealment algorithm the lost frames are simply zero filled. This is
helpful if you want to use a wave editor to view the location of the missing frames.

Use the -stats option to print out the number and percentage of frames concealed in the
processed file.

4.3.3.2 Test Program Implementation

A simplified version of the C++ test program is shown next. This program does not support
any options, such as -noplc, or compensate for the algorithm delay, but demonstrates how the
components work together.

32 ITU-T Software Tool Library, release 2009

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "error.h"
#include "plcferio.h"
#include "lowcfe.h"

int main(int argc, char *argv[]) {

FILE *fi; /* input file */

FILE “fo; /% output file */

LowcFE fesim; /* PLC simulation class */
readplcmask mask; /% error pattern file reader */
short s[FRAMESZ]; /* i/o buffer */

argc--; argv++;

if (argc !'= 3)
error("Usage: g71liplc plcpattern speechin speechout");
readplcmask_open(&mask, argv[0]);
if ((fi = fopen(argv[1], "rb")) == NULL)
error("Can’t open input file: %s", argv[1l]);
if ((fo = fopen(argv[2], "wb")) == NULL)
error("Can’t open output file: %s", argv[2]);
while (fread(s, sizeof(short), FRAMESZ, fi) == FRAMESZ) {
if (readplcmask_erased(&mask))
fesim.dofe(s); /* lost frame */
else
fesim.addtohistory(s); /* received frame */
furite(s, sizeof(short), FRAMESZ, fo);
}
fclose(fo);
fclose(fi);
readplcmask_close(&mask);
return 0;

4.3.4 Loss Pattern Conversion Utility
The PLC directory includes a tool, asc2g192, for converting ASCII loss pattern files containing
sequences of Os and 1Is into G.192 format pattern files. In ASCII loss pattern files, a “1” repre-

sents a lost frame and a “0” represents a received frame. For example, to create a 10% uniform
loss pattern with each loss being 10ms, use a text editor to create a text file called fel@. txt:

0000000001

Then, convert it to the G.192 format for use by the g711iplc program with the following com-
mand:

asc2gl92 fel®.txt fel®.gl92

Similarly, to create a 10% uniform loss pattern with each loss being 20ms (2 frames for each
loss), create the text file fel0®_2.txt :

Version: November 30, 2009 33
00000000000000000011
Then convert it to the G.192 format with:
asc2gl92 fel®_2.txt felO_2.g192

The asc2g192 conversion program ignores new lines and carriage returns in the input file so
the patterns can span multiple lines.

34

ITU-T Software Tool Library, release 2009

Chapter 5

G.726: The ITU-T ADPCM algorithm at
40, 32, 24, and 16 kbit/s

In 1982, a group was established by the then CCITT Study Group XVIII to study the standard-
ization of a speech coding technique that could reduce the 64 kbit/s rate used in digital links, as
per ITU-T Recommendation G.711 (see related Chapter), by half while maintaining the same
voice quality.

After considering contributions received from several organizations, there was a general feeling
that the ADPCM (Adaptive Differential Pulse Code Modulation) technique could provide a
good quality coder. This process of finalizing an algorithm took 18 months of development and
objective and subjective testings, to culminate in a ITU Recommendation, published in October,
1984, and available in the Red Book series as Recommendation G.721.

Meanwhile, problems were found with the G.721 algorithm of 1984 regarding voice-band data
signals modulated using the Frequency Shift Keying (FSK) technique, and changes had to be
done to the algorithm. These changes were approved in 1986 and published in the next series
of Recommendations of the CCITT, the Blue Book series, superseeding the Red Book version
of the G.721. This is why a note in the Blue Book G.721 warns the user that the bit stream
of coded speech from this version is incompatible with the old one. Also in that Study Period
(1985-1988), a need for other rates was identified, and a new Recommendation, G.723, was
approved to extend the bitrate to 24 and 40 kbit/s.

In the Study Period of 1989-1992, these two Recommendations have been joined into a single
one, keeping full compatibility with the former ones, and adding a lower rate of 16 kbit/s. This
new Recommendation was named G.726, and the former G.721 and G.723 have been replaced.

The current version of the STL includes a G.726 implementation. In the section to follow,
the operation of the G.726 algorithm is described only for the 32 kbit/s bit rate. A complete
description of the G.726 algorithm can be found in [6]. Other analyses of the algorithm, besides
some based on the Red Book version, can be found in several studies [8, 9, 10].

Despite the change in numbering, the ITU-T ADPCM algorithm for speech coding at 32 kbit/s,
the term “G.721 algorithm” has been retained for simplicity of the text, although a more formal
reference should be “G.726 at 32 kbit/s”.

35

36 ITU-T Software Tool Library, release 2009

5.1 Description of the 32 kbit/s ADPCM

The basic idea behind the G.721 coder is to code into 4-bit samples the input speech-band
signals, sampled at 8 kHz and represented by the 8-bit of G.711 A or u law samples. The
decoder just implements the reverse procedure.

The ADPCM algorithm of the G.721 exploits the predictability of the speech signals. Therefore,
an adaptive predictor is used to compute the difference signal d(k) (based on the expanded input
log-pcm sample s(k)), which is then quantized by an adaptive quantizer using 4 bits. These bits
are sent to the decoder and then fed into an inverse quantizer. The difference signal is used to
calculate the reconstructed signal, s,(k), which is compressed (A- or u-law) and output from the
decoder (s,4(k)).

From this description, one could ask the following:

e If only the quantized signal is transmitted, how can the decoder reconstruct the
signal?

e How can one assure estability of the predictor?

e Will this bitrate reduction degrade the voice quality?

These and others have already been considered in the design of the G.721, and many blocks
of the algorithm are made to assure a good behaviour. For example, one possibility in this
backward approach for adaptation is to have encoder and decoder starting from the same point,
which is accomplished by reseting key variables to a known state (useful for implementation
verification). Leak factors have been introduced to ensure that the algorithm will always con-
verge, independently of the initial state. To avoid instabilities, some parameters had their range
limited. To provide some insight in the building blocks of the G.721 algorithm, a short descrip-
tion of each of them is given [6, 9].

5.1.1 PCM format conversion

The input signal s(k), in either A- or pu-law format, must be converted into linear samples. This
expansion is accomplished using the same algorithm in G.711 [4], but converting from signed
magnitude to 14-bit two’s complement samples.

5.1.2 Difference Signal Computation

This block simply calculates the difference between the (expanded) input signal and the esti-
mated signal:

d(k) = si(k) = s.(k)

5.1.3 Adaptive Quantizer

A 15-level, non-uniform adaptive quantizer is used to quantize the difference signal. Before
the quantization, this signal is converted to a logarithmic representation' and scaled by a factor
(v(k)), that is computed in the scale factor adaptation block (see below).

'Remember that to multiply samples in the linear domain one may add in the logarithmic one. Using efficient
log and exponentiation algorithms (as done here), this turns out to be very advantageous.

Version: November 30, 2009 37

The output of this block is I(k), and it is used twice; first, is the ADPCM coded (quantized)
sample; second, is the input to the backward part of the G.721 algorithm, to provide information
for quantization of the next samples. One relevant point to notice here is that the backward
adaptation is done using the quantized sample. If one starts the decoder from this very point,
one will find identical behaviour. That is why only the quantized samples are needed in the
decoder (i.e., no side information).

5.1.4 Inverse Adaptive Quantizer

The inverse adaptive quantizer takes the signal /(k) and converts it back to the linear domain,
generating a quantized version of the difference signal, d,(k). This is the input to the adaptive
predictor, such that the estimated signal is based on a quantized version of the difference signal,
instead of on the unquantized (original) one.

5.1.5 Quantizer Scale Factor Adaptation

This block computes y(k), the factor used in the adaptive quantizer and inverse quantizer for
domain conversion. As input, this block needs /(k), but also a,;(k), the adaptation speed control
parameter. The reason for the latter is that the scaling algorithm has two modes (bimodal adap-
tation), one fast, another slow. This has been done to accomodate signals that in nature produce
difference signals with large fluctuations (e.g. speech) and small fluctuations (e.g. tones and
voice-band data), respectively.

This block computes two scale factor (fast, y,(k), and slow, y,(k)) based on I(k), which combined
using a;(k) produce y(k).

5.1.6 Adaptation Speed Control

This block evaluates the parameter a,(k), which can be seen as a proportion of the speed (fast
or slow) of the input signal, and is in the range [0, 1]. If 0, the data are considered to be slowly
varying; if 1, they are considered to be fast varying.

To accomplish this, two measures of the average magnitude of /(k) are computed (d,,,(k) and
d(k)). These, in conjunction with delayed tone detect and transition detect flags (z,(k) and
t(k), calculated in the Tone Transition and Detector block), are used to evaluate a,(k), whose
delayed version (a,(k — 1)) is used in the definition of a,(k), limiting the range to [0, 1.

An analysis of a,(k) gives insight on the nature of the signal: if around the value of 2, this means
that the average magnitude of /(k) is changing, or that a tone has been detected, or that it is idle
channel noise; on the other side, if near 0, the average magnitude of /(k) remains relatively
constant.

This limitation delays the start of a fast to slow transition until the average magnitude of /(k) remains constant
for some time; acting so, premature transitions for pulsed input signals, such as switched carrier voiceband data,
are avoided.

38 ITU-T Software Tool Library, release 2009

5.1.7 Adaptive Predictor and Reconstructed Signal Calculator

The adaptive predictor has as its main function to compute the signal estimate based on the
quantized difference signal, d (k). It has 6 zeroes and 2 poles, structure that covers well the
kind of input signals expected for the algorithm. With these coefficients, and past values of
d,(k) and s.(k), the updated value for the signal estimate s.(k) is computed.

The two sets of coefficients (one for the pole section, a;(k),i = 1..2, other for the zero section,
bi(k),i = 1..6) are updated using a simplified gradient algorithm. At this point, since a situation
in which the poles cause instability may arise, the two pole coefficients a; have their ranges
limited. In addition, if a transition from partial band signal is detected (signaled by #.(k)), the
predictor is reset (all coefficients are set to 0), remaining disabled until ¢, comes back to zero®.

The reconstructed signal s,(k) is calculated using the signal estimate s.(k) and the quantized
difference signal d, (k).

5.1.8 Tone Transition and Detector

This block is one of the changes from the Red Book version. It was added to improve algorithm
performance for signals originating from FSK modems operating in the character mode. First,
it checks if the signal has partial band (e.g., a tone) by looking at the predictor coeflicient a,(k),
that defines the signal 7,(k). Second, a transition from partial band signal indicator ¢,(k) is set,
such that predictor coefficients can be set to 0 and the quantizer can be forced into the fast mode
of operation.

5.1.9 Output PCM Format Conversion

This block is unique to the decoder. Its sole function is to compress the reconstructed signal
s,(k), which is in linear PCM format, using A or u law, and is a complement of the PCM format
conversion block.

5.1.10 Synchronous Coding Adjustment

This block is also unique to the decoder. It has been devised in order to prevent cumulative
distortions occuring on synchronous tandem codings (ADPCM-PCM-ADPCM, etc., in purely
digital connections, i.e., with no intermediate analog conversions), provided that:

e the transmission of the ADPCM and the intermediate PCM are error-free, and

e the ADPCM and the intermediate PCM are not disturbed by digital signal process-
ing devices.

5.1.11 Extension for linear input and output signals

An extension of the G.726 algorithm was carried out in 1994 to include, as an option, linear
input and output signals. The specification for such linear interface is given in its Annex A [11].

3Note that when this happens, the quantizer is forced into the fast mode of adaptation.

Version: November 30, 2009 39

This extension bypasses the PCM format conversion block for linear input signals, and both the
Output PCM Format Conversion and the Synchronous Coding Adjustment blocks, for linear
output signals. These linear versions of the input and output signals are 14-bit, 2’s complement
samples.

The effect of removing the PCM encoding and decoding is to decrease the coding degradation
by 0.6 to 1 qdu, depending on the network configuration considered (presence or absence of a
G.712 filtering).

Currently, this extension has not been incorporated in the STL.

5.2 ITU-T STL G.726 Implementation

The STL implementation of the G.726 algorithm can be found in module g726. c, with proto-
types in g726.h.

Originally in Fortran (VAX Fortran-77), the source was translated by means of the public-
domain code converter f2¢ [12]. This explain why the code makes extensive use of passage of
parameters by reference, rather than by value, and why many functions, that could be imple-
mented as macros (using the C pre-processor directive #define), are routines, and as well as
all routines return void.

The problem of storing the state variables was solved by defining a structure containing all the
necessary variables, defining a new type called G726_state. By means of this approach, several
streams may be processed in parallel, provided that one structure is assigned (and that one
call to the encoding/decoding routines is done) for each data stream (this can be advantageous
for machines with support for parallel processing). The G726 state variable structure has the
following fields (all are short, except ylp, which is long):

sr0 Reconstructed signal with delay 0

srl Reconstructed signal with delay 1

alr Delayed 2nd-order predictor coefficient 1
a2r Delayed 2nd-order predictor coefficient 2
blr Delayed 6th-order predictor coefficient 1
b2r Delayed 6th-order predictor coefficient 2
b3r Delayed 6th-order predictor coeflicient 3
b4r Delayed 6th-order predictor coefficient 4
b5r Delayed 6th-order predictor coefficient 5
bér Delayed 6th-order predictor coeflicient 6
dq0 Quantized difference signal with delay 0
dql Quantized difference signal with delay 1
dq2 Quantized difference signal with delay 2
dq3 Quantized difference signal with delay 3
dg4 Quantized difference signal with delay 4
dqg5 Quantized difference signal with delay 5
dmsp Short term average of the F'(I) sequence
dmlp Long term average of the F(I) sequence
apr Triggered unlimited speed control parameter
yup Fast quantizer scale factor

tdr Triggered tone detector

40 ITU-T Software Tool Library, release 2009

b0..b3 \\\

b0 .. b
b0 ..b4 |\

smpno-1

40 kbit’s mode (5 bits/sample) 3

N o

5% 852 5|5 5|5 |1
4

22 2|20 33 8|80

0) 1 ' smpno-1 0 1) smpno-1

24 kbit/s mode (3 bits/sample) 16 kbit/s mode (2 bits/sample)

Figure 5.1: Packing of G.726-encoded signals (right-aligned, parallel format).

pkO Sign of dq+sez with delay 0
pkl Sign of dq+sez with delay 1
yip Slow quantizer scale factor

The encoding function is G726_encode, and the decoding function is G726_decode. There are
41 other routines that, grouped in individual calls inside the encoder and decoder, implement
the algorithm. Therefore, none of these 41 routines are expected to be accessed by the user, and
only the two main ones.

In the following part a summary of calls to both functions is found.

5.2.1 G726_encode

Syntax:

#include "g726.h"
void G726_encode (short *inp_buf, short *out_buf, long smpno, char
*law, short rate, short reset, G726_state *state)

Prototype: g726.h
Description:

Simulation of the ITU-T G.726 ADPCM encoder. Takes the A or u law input array of shorts
inp_buf (16 bit, right-justified, without sign extension) with smpno samples, and saves the
encoded samples in the array of shorts out_buf, with the same number of samples and right-

justified. An example of the sample packing for the G.726 encoded bitstream is shown in figure
5.1.

The state variables are saved in the structure state, and the reset can be stablished by making
reset equal to 1. The law is A if law=="1", and mu law if law=="0".

Version: November 30, 2009 41

Variables:

inp-buf ... Is the input samples’ buffer; each short sample shall contain
right-justified 8-bit wide valid A or ¢ law samples.

out buf Is the output samples’ buffer; each short sample will contain
right-justified 2-, 3-, 4-, or 5-bit wide G.726 ADPCM samples,
depending on the rate used.

SMPpRo .. Is the number of samples in inp_buf.

law o Is a char indicating if the law for the input samples is A (’1’) or
u(’9’). See note below.

rate ... Is a short indicating the number of bits per sample to used by the
algorithm: 5, 4, 3, or 2.

reset, Is the reset flag (see note below):

e /: reset is to be applied in the variables;
e (: processing is carried out without setting state variables to the
reset state.
Please note that this should normally be done only in the first call
to the routine in processing a sample stream.

state The state variable structure; all the variables here are for internal
use of the G.726 algorithm, and should not be changed by the
user. Fields of this structure are described above.

Note: Please note the difference between reset and law: reset must be either 1 (0x01) or O
(0x00), not ‘1’ (0x31) or ‘0’ (0x30), while law is exactly the opposite.

Return value: None.

5.2.2 G726_decode

Syntax:

#include "g726.h"
void G726_decode (short *inp_buf, short *out_buf, long smpno, char
*law, short rate, short reset, G726_state *state)

Prototype: g726.h
Description:

Simulation of the ITU-T G.726 ADPCM decoder. Takes the ADPCM input array of shorts
inp_buf (16 bit, right- justified, without sign extension) of length smpno, and saves the decoded
samples (A or u law) in the array of shorts out_buf, with the same number of samples and
right-justified.

The state variables are saved in the structure state, and the reset can be stablished by making
reset equal to 1. The law is A if law=="1", and mu law if law=="0".

Variables:

inp-buf ... Is the input samples’ buffer; each short sample will contain right-
justified 2-, 3-, 4-, or 5-bit wide G.726 ADPCM samples.

outbuf Is the output samples’ buffer; each short sample shall contain

right-justified 8-bit wide valid A or u law samples.
smpno ... Is the number of samples in inp_buf.

42 ITU-T Software Tool Library, release 2009

law ool Is a char indicating if the law for the input samplesis A (’1’) or
u(’0”). See note below.

rate .. Is a short indicating the number of bits per sample to used by the
algorithm: 5, 4, 3, or 2.

reset ...l Is the reset flag (see note below):
e /: reset is to be applied in the variables;
e 0: processing done without setting state variables to reset state.
Please note that this should normally be done only in the first call
to the routine in processing a sample stream.

state The state variable structure; all the variables here are for internal
use of the G.721 algorithm, and should not be changed by the
user. Fields of this structure are described above.

Note: Please note the difference between reset and law: reset must be either 1 (0x01) or O
(0x00), not ‘1’ (0x31) or ‘0’ (0x30), while law is exactly the opposite.

Return value: None.

5.3 Portability and compliance

Code testing has been done using the reset test sequences for 40, 32, 24, and 16 kbit/s provided
in the G.726 test sequence diskettes (available from the ITU sales department). Other tests were
also done with speech files for the 32 kbit/s mode, comparing with reference implementations,
most noticeably the one from AT&T Bell Laboratories, which is the original implementation.
Both test approaches generated 100% compatibility of this implementation with the G.726. *

The portability of the STL G.726 encoding function has been tested by feeding the routine
with the reset test sequences of the G.726 test sequences diskettes (available from the ITU
Secretariat). As inputs, a binary version of the files nrm.a, ovr.a, nrm.m, ovr.m have been used
for the 4 bit rates; the output of G726_encoder was then compared with a binary version of
the files rnrrfa.i, rvrrfa.i, rnrrfm.i, rvrrfm., rr = 16,24,32,40, accordingly for each input
sequence and rate. The encoding routine passed the test when no differences in the bit streams
were found.

The portability test of the decoding function was carried out by feeding this routine with the
pertinent test sequences of the G.726 Test Sequences Diskettes. As inputs, a binary version
of the files rnrrfa.i, rvrrfad, rnrrfad, rvrrfad, rmnrrfm.a, rverfm.i, rnrrfm.i, rvrerfm.i, and irr
(twice: one for A and another for u law) have been used, rr being 16, 24, 32, and 40. The out-
put of G726_decoder was then compared with a binary version of the files rnrrfa.o, rvrrfa.o,
rrrfx.o, rvrrfx.o, rnrrfm.o, rvrrfm.o, rmrrfc.o, rvrric.o, rirrfa.o, rirrfm.o (rr as above), re-
spectively for each input sequences. All test vectors were properly processed.

These routines have been tested in VAX/VMS with VAX-C and GNU-C, in the PC with Borland
C v3.0 (16-bit mode) and GNU-C (32-bit mode). In the Unix environment for Sun cc, acc, and
gcc, and in HP for gcc.

“The problem with the A-law 40 kbit/s test vector ri40fa.o present in the STL96 has been solved in the
STL2000.

Version: November 30, 2009 43

5.4 Example code

5.4.1 Description of the demonstration programs

Two programs are provided as demonstration programs for the G.726 module, g726demo.c and
vbr-g726.c.

Program g726demo. c accepts input files in either 16-bit, right-justified A- or u-law format (as
generated by g711demo.c) and encodes and/or decodes using one of the G.726 bit rates (16,
24, 32, or 40 kbit/s). Linear PCM files are not accepted by the program. Three operations are
possible: logarithmic in, logarithmic out (lolo) logarithmic in, ADPCM out (load), or ADPCM
in, logarithmic out (adlo).

Program vbr-g726.c can perform the same functions as g726demo. c, however it is capable
of two additional features. It can perform in variable bit rate mode, which is switched at user-
specified frame sizes (i.e. number of samples), and it can operate from 16-bit linear PCM input
files. In the latter case, A-law is used to compand the linear signal prior to G.726 encoding,
since G.726 Annex A [11] is not yet implemented in the STL.

5.4.2 Simple example

The following C code gives an example of G.726 coding and decoding using as input speech
previously encoded by either the A- or u-law functions available in the STL. The output samples
will be encoded using the same law of the input signal.

#include <stdio.h>
#include "ugstdemo.h"
#include "g726.h"
#define BLK_LEN 256

void main(argc, argv)

int argc;
char *argv([];
{
G726_state encoder_state, decoder_state;
char law[4];
short bitrate, reset;
char FileIn[180], FileOut[180];
short tmp_buf[BLK_LEN], inp_buf[BLK_LEN], out_buf[BLK_LEN];
FILE *Fi, *Fo;

/% Get parameters for processing */

GET_PAR_S(1, " _LaW: ..vivrinrnnrnnenrnnnnnnns ", law);

GET_PAR_I(2, "_Bit-rate:iviirennnnnns ", bitrate);
GET_PAR_S(2, "_Input File: ", Fileln);
GET_PAR_S(3, "_Output File: ", FileOut);

/* Opening input and output LOG-PCM files */
Fi = fopen(FileIn, RB);

44 ITU-T Software Tool Library, release 2009

Fo = fopen(FileQut, WB);

/% File processing */
reset = 1; /* set reset flag as YES */
while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)
{
/% Process input log PCM samples in blocks of length BLK_LEN */
G726_encode(inp_buf, tmp_buf, BLK_LEN, law, bitrate, reset, &encoder_state);

/* Process ADPCM samples in blocks of length BLK_LEN */
G726_decode(tmp_buf, out_buf, BLK_LEN, law, bitrate, reset, &decoder_state);

/* Write PCM output word */
furite(out_buf, BLK_LEN, sizeof(short), Fo);

if (reset)
reset = 0; /* set reset flag as NOMORE */
}
/% Close input and output files */
fclose(Fi);
fclose(Fo);

Chapter 6

G.727: The ITU-T embedded ADPCM
algorithm at 40, 32, 24, and 16 kbit/s

6.1 Description of the Embedded ADPCM

The G.727 algorithm is specified in ITU-T Recommendation G.727 [13] with the block diagram
shown in Figure 6.1, and will not be further described here. Additional information can be found
in [10], where a thorough comparison is made between different ADPCM schemes, including
G.726 and G.727. Details on the linear interface for the G.727 algorithm are found in G.727
Annex A [14].

6.1.1 Extension for linear input and output signals

An extension of the G.727 algorithm was carried out in 1994 to include, as an option, linear
input and output signals. The specification for such linear interface is given in its Annex A [14].

This extension bypasses the PCM format conversion block for linear input signals, and both the
Output PCM Format Conversion and the Synchronous Coding Adjustment blocks, for linear
output signals. These linear versions of the input and output signals are 14-bit, 2’s complement
samples.

The effect of removing the PCM encoding and decoding is to decrease the coding degradation
by 0.6 to 1 qdu, depending on the network configuration considered (presence or absence of a
G.712 filtering).

Currently, this extension has not been incorporated in the STL.

6.2 ITU-T STL G.727 Implementation

The STL implementation of the G.727 algorithm can be found in module g727 . c, with proto-
types in g727 .h.

The problem of storing the state variables was solved by defining a structure containing all the
necessary variables, defining a new type called G727_state. As for other STL modules, the
use of the state variable allows for parallel processing flows in the same executable program.

45

46

ITU-T Software Tool Library, release 2009

k) ADPCM Reconstructed
output —» signal [
calculator
¢S,(k)
s(k) Input PCM Difference . Feed-back I (k) Inverse)
—> format > signal e hdapie bit adaptive [Alapthe —
conversion S (k) computation d(k) a Itk) masking quantizer q(P s, (4
3 (k)
vy
Quantizer Adaptation < Tone and
scale factor (k) speed t(k)es transition
adaptation
ap < a(k) control <« (k) detector
Wk | t
(a) Encoder
Feed-forward a, (K)ee Feed-forward S(K)ee Output PCM Spk) Synchronous Sq(k)
» inverse adaptive reconstructed » format coding —»
quantizer signal calculator conversion adjustment
3 Y
tyw t
,) 1,(k) Feed-back 94Meg| Feed-back
1" (k, - .
*) > Feer;iais)ii%k bit ‘e p inverse adaptive reconstructed I—
ADPCM 9 quantizer signal calculator
input
1 P se(k) 5(K)eg
Adaptive
> predictor <
(k)
t, (k)
Quantizer " Tone and
scale factor y(k) S Agezp::aoimol transition
adaptation P detector
ak) ty(k)
|1 b t
(b) Decoder

Figure 6.1: G.727 encoder and decoder block diagrams

Version: November 30, 2009 47

The internal elements of the state variable G727 _state should not be modified by the user, and
are not described here.

The encoding function is G727 _encode, and the decoding function is G727 _decode. Addition-
ally, initialization and reset of the state variable is performed by g727 reset. There are other
internal routines which are not for access by the user, and hence are not described here. Their
usage description is given below.

6.2.1 G727 reset

Syntax:

#include "g727.h"
void G727_reset (g727_state *st);

Prototype: g727.h
Description:

Reset ITU-T G.727 embedded ADPCM encoder or decoder state variable.

6.2.2 G727_encode

Syntax:

#include '"g727.h"
void G727_encode (short *src, short *dst, short smpno, short law,
short cbits, short ebits, g727_state *state);

Prototype: g727.h
Description:

Simulation of the ITU-T G.727 embedded ADPCM encoder. Takes the A or u law input array
of shorts src (16 bit, right- justified, without sign extension) of