powered by spray paint
what doesn't kill you makes you high
This commit is contained in:
parent
92a06b42d5
commit
40d353a37a
5 changed files with 262 additions and 3 deletions
21
.gitignore
vendored
21
.gitignore
vendored
|
@ -1,8 +1,23 @@
|
||||||
build
|
# editor swap files
|
||||||
.*.sw*
|
.*.sw*
|
||||||
.*~
|
.*~
|
||||||
*~
|
*~
|
||||||
/build/
|
|
||||||
*.txt
|
# images
|
||||||
*.jpg
|
*.jpg
|
||||||
*.png
|
*.png
|
||||||
|
/files/
|
||||||
|
|
||||||
|
# cmake
|
||||||
|
CMakeCache.txt
|
||||||
|
CMakeFiles
|
||||||
|
CMakeScripts
|
||||||
|
Makefile
|
||||||
|
cmake_install.cmake
|
||||||
|
install_manifest.txt
|
||||||
|
compile_commands.json
|
||||||
|
CTestTestfile.cmake
|
||||||
|
/build/
|
||||||
|
|
||||||
|
# executables
|
||||||
|
/lines
|
||||||
|
|
19
CMakeLists.txt
Normal file
19
CMakeLists.txt
Normal file
|
@ -0,0 +1,19 @@
|
||||||
|
cmake_minimum_required( VERSION 2.8 )
|
||||||
|
project( bs_dsp )
|
||||||
|
|
||||||
|
# Eigen library
|
||||||
|
include_directories( "/usr/include/eigen3/" )
|
||||||
|
|
||||||
|
# OpenCV
|
||||||
|
find_package( OpenCV 3.1 REQUIRED )
|
||||||
|
|
||||||
|
# CUDA
|
||||||
|
find_package( CUDA )
|
||||||
|
if (CUDA_FOUND)
|
||||||
|
include( FindCUDA )
|
||||||
|
cuda_add_executable( bs_dsp bs_dsp.cu )
|
||||||
|
target_link_libraries( bs_dsp ${OpenCV_LIBS} )
|
||||||
|
endif (CUDA_FOUND)
|
||||||
|
|
||||||
|
add_executable( lines lines.cpp )
|
||||||
|
target_link_libraries( lines ${OpenCV_LIBS} )
|
159
bs_dsp.cu
Normal file
159
bs_dsp.cu
Normal file
|
@ -0,0 +1,159 @@
|
||||||
|
#include<cuda.h>
|
||||||
|
#include<opencv2/opencv.hpp>
|
||||||
|
|
||||||
|
#define cudaASSERT(ans) \
|
||||||
|
{ \
|
||||||
|
cudaAssert((ans), __FILE__, __FUNCTION__, __LINE__); \
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
float hs; // space bandwidth
|
||||||
|
float hc; // color bandwidth
|
||||||
|
|
||||||
|
int iterations; // number of iterations
|
||||||
|
|
||||||
|
// device parameters
|
||||||
|
size_t bsize; // threads per block (x and y dimensions)
|
||||||
|
|
||||||
|
// gamma correction
|
||||||
|
float exponent;
|
||||||
|
|
||||||
|
// image dimensions
|
||||||
|
int rows;
|
||||||
|
int cols;
|
||||||
|
} MSdata;
|
||||||
|
|
||||||
|
|
||||||
|
// informs the user when a CUDA error occurs (optionally, also stops the program execution)
|
||||||
|
void cudaAssert(cudaError_t code, const char *file, const char *fn, int line, bool abort=false)
|
||||||
|
{
|
||||||
|
if( cudaSuccess!=code )
|
||||||
|
{
|
||||||
|
fprintf(stderr,"[%s() @ %s:%d] %s\n",fn,file,line,cudaGetErrorString(code));
|
||||||
|
if( abort )
|
||||||
|
{
|
||||||
|
exit(code);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// CUDA kernel for the mean shift algorithm for grayscale images
|
||||||
|
__global__ void cudaMeanShift1D(unsigned char *U, unsigned char *V, const MSdata data)
|
||||||
|
{
|
||||||
|
// compute pixel coordinates
|
||||||
|
const int x=blockDim.x*blockIdx.x+threadIdx.x;
|
||||||
|
const int y=blockDim.y*blockIdx.y+threadIdx.y;
|
||||||
|
|
||||||
|
// square space and color "bandwidths"
|
||||||
|
const int hs=data.hs*data.hs;
|
||||||
|
const int hc=data.hc*data.hc;
|
||||||
|
|
||||||
|
#define e_U(i,j) U[(j)*data.cols+(i)]
|
||||||
|
#define e_V(i,j) V[(j)*data.cols+(i)]
|
||||||
|
if( data.cols>x && data.rows>y )
|
||||||
|
{
|
||||||
|
float I=0.0f,W=0.0f,w;
|
||||||
|
|
||||||
|
// compute the neighborhood size of the pixel (x,y)
|
||||||
|
const int dx_min=(data.hs>x)?x:data.hs;
|
||||||
|
const int dy_min=(data.hs>y)?y:data.hs;
|
||||||
|
const int dx_max=((data.hs+x)>=data.cols)?(data.cols-x-1):data.hs;
|
||||||
|
const int dy_max=((data.hs+y)>=data.rows)?(data.rows-y-1):data.hs;
|
||||||
|
|
||||||
|
// for each neighbor (i,j) of the pixel (x,y),
|
||||||
|
for( int dx=-dx_min; dx_max>=dx; dx++)
|
||||||
|
{
|
||||||
|
const int i=x+dx;
|
||||||
|
for( int dy=-dy_min; dy_max>=dy; dy++ )
|
||||||
|
{
|
||||||
|
const int j=y+dy;
|
||||||
|
|
||||||
|
// compute the kernel value at -||(X-X_{i})/h||^2
|
||||||
|
const float dI=e_U(i,j)-e_V(x,y);
|
||||||
|
if( hs>=(dx*dx+dy*dy) && hc>=(dI*dI) )
|
||||||
|
{
|
||||||
|
w=1.0f;//__expf(-(dx*dx+dy*dy)/hs-dI*dI/hc);
|
||||||
|
W+=w;
|
||||||
|
I+=w*e_U(i,j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute the new intensity value
|
||||||
|
e_V(x,y)=round(I/W);
|
||||||
|
}
|
||||||
|
#undef e_U
|
||||||
|
#undef e_V
|
||||||
|
}
|
||||||
|
|
||||||
|
// CUDA kernel for gamma correction
|
||||||
|
__global__ void cudaGammaCorrection(unsigned char *U, const MSdata data)
|
||||||
|
{
|
||||||
|
// compute pixel coordinates
|
||||||
|
const int x=blockDim.x*blockIdx.x+threadIdx.x;
|
||||||
|
const int y=blockDim.y*blockIdx.y+threadIdx.y;
|
||||||
|
|
||||||
|
#define e_U(i,j) U[(j)*data.cols+(i)]
|
||||||
|
if( data.cols>x && data.rows>y )
|
||||||
|
{
|
||||||
|
float value=0.00392156862f*e_U(x,y);
|
||||||
|
value=255.0f*powf(value,data.exponent);
|
||||||
|
e_U(x,y)=round(value);
|
||||||
|
}
|
||||||
|
#undef e_U
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int main(int argc, char **argv)
|
||||||
|
{
|
||||||
|
cv::Mat img=cv::imread("../prospettiva.jpg");
|
||||||
|
cv::cvtColor(img,img,CV_BGR2GRAY);
|
||||||
|
|
||||||
|
MSdata data;
|
||||||
|
data.bsize=32;
|
||||||
|
data.iterations=50;
|
||||||
|
data.hc=10;
|
||||||
|
data.hs=3;
|
||||||
|
data.cols=img.cols;
|
||||||
|
data.rows=img.rows;
|
||||||
|
data.exponent=0.85f;
|
||||||
|
|
||||||
|
// device arrays
|
||||||
|
unsigned char *d_U,*d_V;
|
||||||
|
|
||||||
|
// memory allocation on device
|
||||||
|
size_t bytes=data.rows*data.cols*sizeof(unsigned char);
|
||||||
|
cudaASSERT( cudaMalloc((void**)&d_U,bytes) );
|
||||||
|
cudaASSERT( cudaMalloc((void**)&d_V,bytes) );
|
||||||
|
|
||||||
|
// grid and blocks geometry
|
||||||
|
dim3 grid(1,1,1);
|
||||||
|
dim3 threads(data.bsize,data.bsize,1);
|
||||||
|
grid.x=(data.cols/data.bsize)+((data.cols%data.bsize)?1:0);
|
||||||
|
grid.y=(data.rows/data.bsize)+((data.rows%data.bsize)?1:0);
|
||||||
|
|
||||||
|
// device arrays initialization
|
||||||
|
cudaASSERT( cudaMemcpy(d_U,img.data,bytes,cudaMemcpyHostToDevice) );
|
||||||
|
cudaASSERT( cudaMemcpy(d_V,img.data,bytes,cudaMemcpyHostToDevice) );
|
||||||
|
|
||||||
|
// mean shift iterations on the GPU
|
||||||
|
for( int k=0; data.iterations>k; k++)
|
||||||
|
{
|
||||||
|
cudaMeanShift1D<<<grid,threads>>>(d_U,d_V,data);
|
||||||
|
}
|
||||||
|
cudaGammaCorrection<<<grid,threads>>>(d_V,data);
|
||||||
|
|
||||||
|
// retrieve result from device
|
||||||
|
cudaASSERT( cudaMemcpy(img.data,d_V,bytes,cudaMemcpyDeviceToHost) );
|
||||||
|
|
||||||
|
// free device memory resources
|
||||||
|
cudaASSERT( cudaFree(d_U) );
|
||||||
|
cudaASSERT( cudaFree(d_V) );
|
||||||
|
|
||||||
|
cv::Mat bw;
|
||||||
|
cv::threshold(img,bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
|
||||||
|
|
||||||
|
cv::imwrite("../modified.jpg",bw);
|
||||||
|
return 0;
|
||||||
|
}
|
3
getfiles
Executable file
3
getfiles
Executable file
|
@ -0,0 +1,3 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
rsync -r www.degenerazione.xyz::avana/scanner/sagoma/ "$(dirname $0)/files/"
|
63
lines.cpp
Normal file
63
lines.cpp
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
#include<opencv2/opencv.hpp>
|
||||||
|
|
||||||
|
int main(int argc, char *argv[])
|
||||||
|
{
|
||||||
|
cv::Mat img=cv::imread("files/masckera.png",CV_LOAD_IMAGE_GRAYSCALE);
|
||||||
|
|
||||||
|
std::vector< std::vector<cv::Point> > contours;
|
||||||
|
std::vector<cv::Vec4i> hierarchy;
|
||||||
|
cv::findContours(img,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE);
|
||||||
|
|
||||||
|
cv::drawContours(img,contours,-1,cv::Scalar(255,255,255),5);
|
||||||
|
|
||||||
|
if( 1!=contours.size() )
|
||||||
|
{
|
||||||
|
std::cout << "non ci piace" << std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<cv::Point> hull;
|
||||||
|
cv::convexHull(cv::Mat(contours[0]),hull,false);
|
||||||
|
|
||||||
|
int i;
|
||||||
|
int idx[4]={0};
|
||||||
|
int distance[2]={0};
|
||||||
|
for( i=0; hull.size()>i; i++ )
|
||||||
|
{
|
||||||
|
cv::Point one=hull[i];
|
||||||
|
cv::Point two=hull[(i+1)%hull.size()];
|
||||||
|
int d=pow(one.x-two.x,2)+pow(one.y-two.y,2);
|
||||||
|
if( d>distance[0] )
|
||||||
|
{
|
||||||
|
idx[1]=idx[0];
|
||||||
|
idx[3]=(idx[1]+1)%hull.size();
|
||||||
|
idx[0]=i;
|
||||||
|
idx[2]=(idx[0]+1)%hull.size();
|
||||||
|
distance[1]=distance[0];
|
||||||
|
distance[0]=d;
|
||||||
|
}
|
||||||
|
else if( d>distance[1] )
|
||||||
|
{
|
||||||
|
idx[1]=i;
|
||||||
|
idx[3]=(i+1)%hull.size();
|
||||||
|
distance[1]=d;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::circle(img,hull[idx[0]],30,255,-1);
|
||||||
|
cv::circle(img,hull[(idx[0]+1)%hull.size()],30,255,-1);
|
||||||
|
|
||||||
|
cv::circle(img,hull[idx[1]],20,255,-1);
|
||||||
|
cv::circle(img,hull[(idx[1]+1)%hull.size()],20,255,-1);
|
||||||
|
|
||||||
|
|
||||||
|
std::cout << hull.size() << ", " << contours[0].size() << std::endl;
|
||||||
|
std::cout
|
||||||
|
<< "(" << idx[0] << "," << distance[0] << ") -- "
|
||||||
|
<< "(" << idx[1] << "," << distance[1] << ")" << std::endl;
|
||||||
|
cv::namedWindow("test",CV_WINDOW_NORMAL);
|
||||||
|
cv::imshow("test",img);
|
||||||
|
cv::waitKey(0);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Reference in a new issue