#include #ifdef HAS_OPENCV3 #include //Any OPENCV3 code #else #include //Any Opencv2 code #endif #include "geometry.h" #include "cvutils.h" #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) // takes the two points that are more distant from the next, ie: // i st distance(hull[i], hull[i+1]) is maximum and 2nd maximum unsigned* max2_distance(std::vector hull) { #ifdef _DEBUG std::cout << "Hull = "; for(auto p: hull) { std::cout << p << " "; } #endif std::cout << std::endl; unsigned *idx = (unsigned*) calloc(2, sizeof(int)); double distance[2] = {0}; for( unsigned i=0; hull.size()>i; i++ ) { cv::Point thispoint=hull[i]; cv::Point nextpoint=hull[(i+1)%hull.size()]; int d=dist(thispoint,nextpoint); if( d>distance[0] ) //the biggest till now { idx[1]=idx[0]; idx[0]=i; distance[1]=distance[0]; distance[0]=d; } else if( d>distance[1] ) // it is the second biggest till now { idx[1]=i; distance[1]=d; } } return idx; } /* check if a,b,newpoint belong to the same line (with minor approximation) */ bool similar_fit(cv::Point a, cv::Point b, cv::Point newpoint) { return similar_fit(a, b, newpoint, 5); } bool similar_fit(cv::Point a, cv::Point b, cv::Point newpoint, float tolerance_degrees) { double angle = inner_angle(a, b, newpoint) * 180 / M_PI; if( angle > (180-tolerance_degrees) && angle < (180+tolerance_degrees) ) { return true; } return false; } bool similar_fit(std::vector group, cv::Point newpoint) { // TODO: it should perform a fit instead of just taking first and last assert(group.size()>=2); return similar_fit(group[0], group[group.size()-1], newpoint); } /* simplify_hull will group all the points of the hull in groups that fit * each group is a "line" */ std::vector> simplify_hull(std::vector hull) { return simplify_hull( hull, 0 ); } std::vector> simplify_hull(std::vector hull, double mindistance) { //each element is a group of point; a group of point is a vector of points that were //contigous and that "fit together" std::vector> pointgroups; std::vector *group = new std::vector(); cv::Point last, current; group->push_back(hull[0]); group->push_back(hull[1]); for( unsigned i=2; hull.size()>i; i++ ) { current = hull[i]; last = (*group)[group->size()-1]; if( similar_fit((*group)[0], last, hull[i]) ) { group->push_back( hull[i] ); } else { if( dist((*group)[0],last)>=mindistance ) pointgroups.push_back(*group); group = new std::vector(); group->push_back(last); group->push_back(hull[i]); } } pointgroups.push_back(*group); //TODO: first and last might just be the same return pointgroups; } /* find_longest_line: walks along the hull starting at "begin" and ending at "end", and find the * longest (well, not strictl: it's a very simple eurhistics) group of points * that are aligned we don't care about the number of points, but about the * euclidean distance between the first and the last * arg hull: the whole convex hull * arg begin: index of the array to start from * arg end: index of the array to end. It can be lower than start, in which case the hull is used * "circularly" * returns: a vector of useful points. Just use the first and the last, do not expect that the points in * between are added to the vector */ std::vector //two points, actually find_longest_line(std::vector hull, unsigned begin, unsigned end) //the hull can be open { std::vector bestline, thisline; int bestdistance = 0; thisline.push_back(hull[(begin)%hull.size()]); thisline.push_back(hull[(begin+1)%hull.size()]); for(unsigned i=(begin+2)%hull.size(); i!=end; i++) { assert(2<=thisline.size()); if(i==hull.size()) { i=0; } assert(i < hull.size()); if(similar_fit(thisline, hull[i])) { thisline.push_back(hull[i]); } else { // considering if the just-finished line is the best if(dist(thisline[0],thisline[thisline.size()-1])>bestdistance) { bestline = thisline; bestdistance = dist(thisline[0],thisline[thisline.size()-1]); } thisline.clear(); assert(bestline.size()>=2); thisline.push_back(hull[(i-1)%hull.size()]); thisline.push_back(hull[i]); }; } if(bestline.size()==0) { // this is the case only when the first line is the best line assert(0==bestdistance); bestline = thisline; } assert(bestline.size()>=2); return bestline; }