talk-hm-0x15/examples/math.html

186 lines
5.1 KiB
HTML
Raw Normal View History

2013-08-12 15:21:38 +02:00
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>reveal.js - Math Plugin</title>
2013-08-12 15:21:38 +02:00
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<link rel="stylesheet" href="../css/reveal.min.css">
<link rel="stylesheet" href="../css/theme/night.css" id="theme">
2013-08-12 15:21:38 +02:00
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<h2>reveal.js Math Plugin</h2>
<p>A thin wrapper for MathJax</p>
2013-08-12 15:21:38 +02:00
</section>
<section>
<h3>The Lorenz Equations</h3>
2013-08-13 05:01:35 +02:00
2013-08-12 15:21:38 +02:00
\[\begin{aligned}
\dot{x} &amp; = \sigma(y-x) \\
\dot{y} &amp; = \rho x - y - xz \\
\dot{z} &amp; = -\beta z + xy
\end{aligned} \]
</section>
2013-08-12 15:24:29 +02:00
<section>
<h3>The Cauchy-Schwarz Inequality</h3>
2013-08-12 15:24:29 +02:00
2013-08-13 06:10:14 +02:00
<script type="math/tex; mode=display">
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
</script>
2013-08-12 15:24:29 +02:00
</section>
<section>
<h3>A Cross Product Formula</h3>
2013-08-12 15:24:29 +02:00
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
\frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
\frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
\end{vmatrix} \]
</section>
<section>
<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
</section>
<section>
<h3>An Identity of Ramanujan</h3>
2013-08-12 15:24:29 +02:00
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
</section>
<section>
<h3>A Rogers-Ramanujan Identity</h3>
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
</section>
<section>
<h3>Maxwell&#8217;s Equations</h3>
\[ \begin{aligned}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
\]
</section>
<section>
<section>
<h3>The Lorenz Equations</h3>
<div class="fragment">
\[\begin{aligned}
\dot{x} &amp; = \sigma(y-x) \\
\dot{y} &amp; = \rho x - y - xz \\
\dot{z} &amp; = -\beta z + xy
\end{aligned} \]
</div>
</section>
<section>
<h3>The Cauchy-Schwarz Inequality</h3>
<div class="fragment">
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
</div>
</section>
<section>
<h3>A Cross Product Formula</h3>
<div class="fragment">
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
\frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
\frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
\end{vmatrix} \]
</div>
</section>
<section>
<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
<div class="fragment">
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
</div>
</section>
<section>
<h3>An Identity of Ramanujan</h3>
<div class="fragment">
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
</div>
</section>
<section>
<h3>A Rogers-Ramanujan Identity</h3>
<div class="fragment">
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
</div>
</section>
<section>
<h3>Maxwell&#8217;s Equations</h3>
<div class="fragment">
\[ \begin{aligned}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
\]
</div>
</section>
</section>
2013-08-12 15:21:38 +02:00
</div>
</div>
<script src="../lib/js/head.min.js"></script>
<script src="../js/reveal.min.js"></script>
<script>
Reveal.initialize({
history: true,
transition: 'linear',
2013-08-13 05:01:35 +02:00
math: {
2013-08-13 14:53:31 +02:00
// mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
2013-08-18 20:13:55 +02:00
config: 'TeX-AMS_HTML-full'
2013-08-13 05:01:35 +02:00
},
2013-08-12 15:21:38 +02:00
dependencies: [
2013-08-13 06:10:14 +02:00
{ src: '../lib/js/classList.js' },
2013-08-12 15:21:38 +02:00
{ src: '../plugin/math/math.js', async: true }
]
});
</script>
</body>
</html>