mindthegap/embers.tex
2017-08-18 11:51:22 +02:00

36 lines
4.5 KiB
TeX

\section{Embers}
Sviluppato dal Descovery Analitics Centre della Virginia Polytechic Institute \textbf{EMBERS} è un progetto che dal 2012 predice ogni giorno 45-50 eventi di rilevanza sociale in molti paesi del Sud America. \cite{Butler}
I finanziamenti arrivano (22 milioni) dall'agenzia di intelligence di stato americana (IARPA) \footnote{\url{https://www.iarpa.gov/
}} in quanto parte del progetto OSI (Open Source Indicators, \footnote{\url{https://www.iarpa.gov/index.php/research-programs/osi}} ), con una collaborazione attiva in termini di ricercatori e finanziamenti di molte università americane.
Lavora utilizzando dati come tweets, pagine facebook , blog posts, ricerche di Google, Wikipedia, dati metereologici, indicatori finanziari ed economici, immagini satellitari. I dati utilizzati sono OpenSource, ovvero accessibili attraverso internet da qualsivoglia operatore, questi dati, che sono di fatto BigData, sono definiti dagli autori del progetto come \textit{massivi, passivi}
Instancabile il programma lavora 24h, 7su7, offrendo pronostici sugli eventi che sconvolgeranno i paesi posti sotto osservazione.
I tipi di eventi prevedibili sono epidemie di malattie rare o di influenze, rivolte ed elezioni poilitche; ma gli autori del progetto sono, inaspettatamente, interessati alle ultime due classi di eventi.
Nell'articolo già citato, con cui Embers si presenta al mondo, i ricercatori elencano i successi ottenuti nella previsione di eventi quali la primavera brasiliana del 2013, le violente proteste degli studenti venezuelani del 2014, le elezioni presidenziali di Panama e Colombia sempre del 2014.
Embers si presenta come il fiore all'occhiello della ricerca in casa Iarpa, infatti rispetto ai presistenti progetti (ICEWS, PITF), il sistema ha un'accuratezza elevata, fino ad indicare città, giorno e volume dell'assembramento di persone.
Inoltre, l'utilizzo di motori per l'analisi e la produzione di testo naturale consente un certo livello di comprensione del fenomeno in questione, e finanché una narrazione dell'evento:
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{images/embers-narrazione}
\caption{An example narrative for a EMBERS alert message. Here, color red indicates named entities, green refers to descriptive protest related keywords. Items in blue are historical or real time statistics and those in magenta refer to inferred reasons of protest.}
\label{fig:embers-narrazione}
\end{figure}
Il processo di svolgimento di embers comprende quattro stadi: ingestion (aquisizione dei dati), enrichment (processamento di questi), modeling (analisi secondo i modelli che costituiscono E), and selection (integrazione dei risultati e presentazione delle predizioni finali).
Un'altra particolarità di EMBERS è quella di utilizzare un approccio a più modelli. Questi sono:
- Planned Protest Model; dai social sono identificati specifici segni di chiamate a eventi di protesta (con luogo e data);
- Dynamic Query expansion; usa twitter per identificare tempo e luogo di diffusione nell'uso di alcune parole chiavi legate alle proteste;
- Volume-based model; si serve di molti dati di indicatori sociali, economici, politici.
- Cascade regression model; modellizza le attività su Twitter che siano legate con organizzazioni e mobilitazioni;
- baseline model ; usa un modello di stima a partire dallo storico degli eventi del GSR (a monthly catalog of events as reported in newspapers of record in 10 Latin American countries).
Efficienza: numero di giorni che la previsione arriva in anticipo rispetto alle news.
Accuratezza: scarto fra la data prevista e quella effettiva.
Nella presentazione del progetto non si elude di affrontare anche le implicazioni etiche di questo! Si tratta di uno strumento che certamente può degenerare se nelle mani sbagliate, come per esempio quelle di un governo autoritario non democratico. Al contrario il popolo è salvo se EMBERS è utilizzato da un governo attento e premuroso come quello statunitense! Anzi, in queste circostanze è da considerare come sensore accurato degli umori dei cittadini rispetto alle politiche governative, uno strumento capace di far sentire più forte la voce di tutti, di avvicinare palazzi del potere e mondo che li circonda.
Obbiettivi:
-affinare sempre di più la precisione della previsione;
-cercare di ridurre sempre più l'lemento umano necessario allo sviluppo dell'analisi, attualmente il suo ruolo maggiore è quello di generare il GSR (ancora una volta si esplicita quanto l'elemento umano sia il problema da eliminare per ottimizzare).