femtoTCP/test/unit/unit.c
2024-10-28 08:30:07 +01:00

791 lines
24 KiB
C

#include "check.h"
#include "../../src/femtotcp.c"
#include <stdlib.h> /* for random() */
/* MOCKS */
/* pseudo random number generator to mock the random number generator */
uint32_t ipstack_getrandom(void)
{
unsigned int seed = 0xDAC0FFEE;
srandom(seed);
return random();
}
static uint8_t mem[8 * 1024];
static uint32_t memsz = 8 * 1024;
static const char ifname[] = "mock0";
static const uint8_t ifmac[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};
static uint8_t last_frame_sent[LINK_MTU];
static uint32_t last_frame_sent_size = 0;
static int mock_send(struct ll *dev, void *frame, int len)
{
(void)dev;
memcpy(last_frame_sent, frame, len);
last_frame_sent_size = len;
return 0;
}
static int mock_poll(struct ll *dev, void *frame, int len)
{
(void)dev;
(void)frame;
(void)len;
return 0;
}
void mock_link_init(struct ipstack *s)
{
struct ll *ll = &s->ll_dev;
strncpy((char *)ll->ifname, ifname, sizeof(ll->ifname) - 1);
memcpy(ll->mac, ifmac, 6);
ll->mac[5] ^= 1;
ll->poll = mock_poll;
ll->send = mock_send;
}
static struct timers_binheap heap;
static void reset_heap(void) {
heap.size = 0;
}
START_TEST(test_fifo_init)
{
struct fifo f;
fifo_init(&f, mem, memsz);
ck_assert_int_eq(fifo_len(&f), 0);
ck_assert_int_eq(fifo_space(&f), memsz);
ck_assert_int_eq(fifo_len(&f), 0);
}
END_TEST
START_TEST(test_fifo_push_and_pop) {
struct fifo f;
struct pkt_desc *desc, *desc2;
uint8_t data[] = {1, 2, 3, 4, 5};
fifo_init(&f, mem, memsz);
ck_assert_int_eq(fifo_space(&f), memsz);
// Test push
ck_assert_int_eq(fifo_push(&f, data, sizeof(data)), 0);
// Test peek
desc = fifo_peek(&f);
ck_assert_ptr_nonnull(desc);
ck_assert_int_eq(desc->len, sizeof(data));
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data, sizeof(data));
desc2 = fifo_peek(&f);
ck_assert_ptr_nonnull(desc2);
ck_assert_ptr_eq(desc, desc2);
ck_assert_int_eq(fifo_len(&f), desc->len + sizeof(struct pkt_desc));
// Test pop
desc = fifo_pop(&f);
ck_assert_int_eq(fifo_space(&f), memsz);
ck_assert_ptr_nonnull(desc);
ck_assert_int_eq(desc->len, sizeof(data));
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data, sizeof(data));
ck_assert_int_eq(fifo_len(&f), 0);
}
END_TEST
START_TEST(test_fifo_push_and_pop_multiple) {
struct fifo f;
uint8_t data[] = {1, 2, 3, 4, 5};
uint8_t data2[] = {6, 7, 8, 9, 10};
fifo_init(&f, mem, memsz);
ck_assert_int_eq(fifo_space(&f), memsz);
// Test push
ck_assert_int_eq(fifo_push(&f, data, sizeof(data)), 0);
ck_assert_int_eq(fifo_len(&f), sizeof(data) + sizeof(struct pkt_desc));
ck_assert_int_eq(fifo_space(&f), f.size - (sizeof(data) + sizeof(struct pkt_desc)));
ck_assert_int_eq(fifo_push(&f, data2, sizeof(data2)), 0);
// Test pop
struct pkt_desc *desc = fifo_pop(&f);
ck_assert_ptr_nonnull(desc);
ck_assert_int_eq(desc->len, sizeof(data));
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data, sizeof(data));
desc = fifo_pop(&f);
ck_assert_ptr_nonnull(desc);
ck_assert_int_eq(desc->len, sizeof(data2));
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data2, sizeof(data2));
}
END_TEST
START_TEST(test_fifo_pop_success) {
struct fifo f;
uint8_t data[] = {1, 2, 3, 4};
fifo_init(&f, mem, memsz);
fifo_push(&f, data, sizeof(data)); // Add data to FIFO
struct pkt_desc *desc = fifo_pop(&f);
ck_assert_ptr_nonnull(desc); // Ensure we got a valid descriptor
ck_assert_int_eq(desc->len, sizeof(data)); // Check length
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data, sizeof(data)); // Check data
}
START_TEST(test_fifo_pop_empty) {
struct fifo f;
fifo_init(&f, mem, memsz);
struct pkt_desc *desc = fifo_pop(&f);
ck_assert_ptr_eq(desc, NULL); // Ensure pop returns NULL on empty FIFO
}
START_TEST(test_fifo_push_full) {
struct fifo f;
uint8_t data[8 * 1024] = {1, 2, 3, 4};
int ret;
fifo_init(&f, mem, memsz);
fifo_push(&f, data, sizeof(data)); // Add data to FIFO
ret = fifo_push(&f, data, sizeof(data));
ck_assert_int_eq(ret, -1); // Ensure push returns -1 when FIFO is full
}
END_TEST
START_TEST(test_fifo_push_wrap) {
struct fifo f;
uint8_t buffer[100];
uint8_t data[] = {1, 2, 3, 4};
int ret;
fifo_init(&f, buffer, sizeof(buffer));
fifo_push(&f, data, sizeof(data)); // Add data to FIFO
// Pop the data to make space
struct pkt_desc *desc = fifo_pop(&f);
ck_assert_ptr_nonnull(desc);
// Push data to wrap around the buffer
ret = fifo_push(&f, data, sizeof(data));
ck_assert_int_eq(ret, 0);
ck_assert_int_eq(desc->len, sizeof(data));
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data, sizeof(data));
}
END_TEST
START_TEST(test_fifo_push_wrap_multiple) {
struct fifo f;
uint8_t data[] = {1, 2, 3, 4};
uint8_t data2[] = {5, 6, 7, 8, 9};
int ret;
fifo_init(&f, mem, memsz);
fifo_push(&f, data, sizeof(data)); // Add data to FIFO
// Pop the data to make space
struct pkt_desc *desc = fifo_pop(&f);
ck_assert_ptr_nonnull(desc);
// Push data to wrap around the buffer
ret = fifo_push(&f, data, sizeof(data));
ck_assert_int_eq(ret, 0);
ck_assert_int_eq(desc->len, sizeof(data));
ck_assert_mem_eq(f.data + desc->pos + sizeof(struct pkt_desc), data, sizeof(data));
// Push more data to wrap around the buffer
ret = fifo_push(&f, data2, sizeof(data2));
ck_assert_int_eq(ret, 0);
ck_assert_int_eq(fifo_len(&f), sizeof(data2) + sizeof(data) + 2 * sizeof(struct pkt_desc));
}
END_TEST
START_TEST(test_fifo_next_success) {
struct fifo f;
uint8_t data1[] = {1, 2, 3, 4};
uint8_t data2[] = {5, 6, 7, 8, 9};
fifo_init(&f, mem, memsz);
// Add two packets to the FIFO
fifo_push(&f, data1, sizeof(data1));
fifo_push(&f, data2, sizeof(data2));
ck_assert_int_eq(fifo_len(&f), sizeof(data1) + sizeof(data2) + 2 * sizeof(struct pkt_desc));
// Get the first packet descriptor
struct pkt_desc *desc = fifo_peek(&f);
ck_assert_ptr_nonnull(desc);
// Get the next packet descriptor using fifo_next
struct pkt_desc *next_desc = fifo_next(&f, desc);
ck_assert_ptr_nonnull(next_desc); // Ensure next descriptor is valid
ck_assert_int_eq(next_desc->len, sizeof(data2)); // Check length of next packet
}
START_TEST(test_fifo_next_empty_fifo) {
struct fifo f;
fifo_init(&f, mem, memsz);
// Start with an empty FIFO
struct pkt_desc *desc = NULL;
struct pkt_desc *next_desc = fifo_next(&f, desc);
ck_assert_ptr_eq(next_desc, NULL); // Ensure next returns NULL on empty FIFO
}
START_TEST(test_fifo_next_end_of_fifo) {
struct fifo f;
uint8_t data[] = {1, 2, 3, 4};
fifo_init(&f, mem, memsz);
fifo_push(&f, data, sizeof(data));
struct pkt_desc *desc = fifo_peek(&f); // Get first packet
fifo_pop(&f); // Simulate removing the packet
struct pkt_desc *next_desc = fifo_next(&f, desc);
ck_assert_ptr_eq(next_desc, NULL); // Should return NULL as there are no more packets
}
END_TEST
START_TEST(test_queue_init) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
ck_assert_int_eq(q.size, memsz);
ck_assert_ptr_eq(q.data, mem);
ck_assert_int_eq(q.head, 0);
ck_assert_int_eq(q.tail, 0);
ck_assert_int_eq(q.seq_base, 0x12345678);
}
END_TEST
START_TEST(test_queue_space_empty) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
ck_assert_int_eq(queue_space(&q), memsz); // Full space should be available
}
END_TEST
START_TEST(test_queue_len_empty) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
ck_assert_int_eq(queue_len(&q), 0); // No bytes should be in use
}
END_TEST
START_TEST(test_queue_partial_fill) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
q.head = 256; // Simulate adding 256 bytes of data
ck_assert_int_eq(queue_space(&q), memsz - 256);
ck_assert_int_eq(queue_len(&q), 256);
}
END_TEST
START_TEST(test_queue_wrap_around) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
q.head = 800;
q.tail = 200; // Head has wrapped around, so 600 bytes are filled
ck_assert_int_eq(queue_space(&q), q.size - 600);
ck_assert_int_eq(queue_len(&q), 600); // 600 bytes filled
}
END_TEST
START_TEST(test_queue_insert_empty) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
uint8_t data[] = {1, 2, 3, 4};
int res = queue_insert(&q, data, 0, sizeof(data));
ck_assert_int_eq(res, 0);
ck_assert_int_eq(queue_len(&q), sizeof(data));
ck_assert_int_eq(q.head, sizeof(data));
ck_assert_mem_eq(q.data, data, sizeof(data));
}
END_TEST
START_TEST(test_queue_insert_sequential) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
uint8_t data1[] = {1, 2};
uint8_t data2[] = {3, 4};
int res1 = queue_insert(&q, data1, 0, sizeof(data1));
int res2 = queue_insert(&q, data2, 2, sizeof(data2));
ck_assert_int_eq(res1, 0);
ck_assert_int_eq(res2, 0);
ck_assert_int_eq(queue_len(&q), sizeof(data1) + sizeof(data2));
ck_assert_mem_eq(q.data, data1, sizeof(data1));
ck_assert_mem_eq(q.data + 2, data2, sizeof(data2));
}
END_TEST
START_TEST(test_queue_pop) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
uint8_t data[] = {5, 6, 7, 8};
uint8_t out[4];
queue_insert(&q, data, 0, sizeof(data));
int len = queue_pop(&q, out, sizeof(out));
ck_assert_int_eq(len, sizeof(out));
ck_assert_mem_eq(out, data, sizeof(data));
ck_assert_int_eq(queue_len(&q), 0);
ck_assert_int_eq(q.tail, 4);
}
END_TEST
START_TEST(test_queue_pop_wraparound) {
struct queue q;
queue_init(&q, mem, memsz, 0x12345678);
uint8_t data[] = {9, 10, 11, 12};
uint8_t out[4];
q.head = memsz - 1;
q.tail = memsz - 1;
queue_insert(&q, data, 0, sizeof(data));
int len = queue_pop(&q, out, sizeof(out));
ck_assert_int_eq(len, sizeof(out));
ck_assert_mem_eq(out, data, sizeof(data));
ck_assert_int_eq(queue_len(&q), 0);
}
END_TEST
/* Utils */
START_TEST(test_insert_timer) {
reset_heap();
struct ipstack_timer tmr1 = { .expires = 100 };
struct ipstack_timer tmr2 = { .expires = 50 };
struct ipstack_timer tmr3 = { .expires = 200 };
int id1 = timers_binheap_insert(&heap, tmr1);
int id2 = timers_binheap_insert(&heap, tmr2);
int id3 = timers_binheap_insert(&heap, tmr3);
ck_assert_int_eq(heap.size, 3);
ck_assert_int_lt(heap.timers[0].expires, heap.timers[1].expires);
ck_assert_int_lt(heap.timers[0].expires, heap.timers[2].expires);
ck_assert_int_ne(id1, id2);
ck_assert_int_ne(id2, id3);
}
END_TEST
START_TEST(test_pop_timer) {
reset_heap();
struct ipstack_timer tmr1 = { .expires = 300 };
struct ipstack_timer tmr2 = { .expires = 100 };
struct ipstack_timer tmr3 = { .expires = 200 };
timers_binheap_insert(&heap, tmr1);
timers_binheap_insert(&heap, tmr2);
timers_binheap_insert(&heap, tmr3);
struct ipstack_timer popped = timers_binheap_pop(&heap);
ck_assert_int_eq(popped.expires, 100);
ck_assert_int_eq(heap.size, 2);
ck_assert_int_lt(heap.timers[0].expires, heap.timers[1].expires);
}
END_TEST
START_TEST(test_is_timer_expired) {
reset_heap();
struct ipstack_timer tmr = { .expires = 150 };
timers_binheap_insert(&heap, tmr);
ck_assert_int_eq(is_timer_expired(&heap, 100), 0);
ck_assert_int_eq(is_timer_expired(&heap, 150), 1);
ck_assert_int_eq(is_timer_expired(&heap, 200), 1);
}
END_TEST
START_TEST(test_cancel_timer) {
reset_heap();
struct ipstack_timer tmr1 = { .expires = 100 };
struct ipstack_timer tmr2 = { .expires = 200 };
int id1 = timers_binheap_insert(&heap, tmr1);
int id2 = timers_binheap_insert(&heap, tmr2);
(void)id2;
timer_binheap_cancel(&heap, id1);
ck_assert_int_eq(heap.timers[0].expires, 0); // tmr1 canceled
struct ipstack_timer popped = timers_binheap_pop(&heap);
ck_assert_int_eq(popped.expires, 200); // Only tmr2 should remain
ck_assert_int_eq(heap.size, 0);
}
END_TEST
/* Arp suite */
START_TEST(test_arp_request_basic)
{
struct ipstack s;
struct arp_packet *arp;
ipstack_init(&s);
uint32_t target_ip = 0xC0A80002; /* 192.168.0.2 */
mock_link_init(&s);
s.last_tick = 1000;
arp_request(&s, target_ip);
ck_assert_int_eq(last_frame_sent_size, sizeof(struct arp_packet));
arp = (struct arp_packet *)last_frame_sent;
ck_assert_mem_eq(arp->eth.dst, "\xff\xff\xff\xff\xff\xff", 6);
ck_assert_mem_eq(arp->eth.src, s.ll_dev.mac, 6);
ck_assert_int_eq(arp->eth.type, ee16(0x0806));
ck_assert_int_eq(arp->htype, ee16(1));
ck_assert_int_eq(arp->ptype, ee16(0x0800));
ck_assert_int_eq(arp->hlen, 6);
ck_assert_int_eq(arp->plen, 4);
ck_assert_int_eq(arp->opcode, ee16(ARP_REQUEST));
ck_assert_mem_eq(arp->sma, s.ll_dev.mac, 6);
ck_assert_int_eq(arp->sip, ee32(s.ipconf.ip));
ck_assert_mem_eq(arp->tma, "\x00\x00\x00\x00\x00\x00", 6);
ck_assert_int_eq(arp->tip, ee32(target_ip));
}
END_TEST
START_TEST(test_arp_request_throttle)
{
struct ipstack s;
ipstack_init(&s);
uint32_t target_ip = 0xC0A80002; /*192.168.0.2*/
mock_link_init(&s);
s.last_tick = 1000;
s.arp.last_arp = 880;
last_frame_sent_size = 0;
arp_request(&s, target_ip);
ck_assert_int_eq(last_frame_sent_size, 0);
}
END_TEST
START_TEST(test_arp_request_target_ip) {
uint32_t target_ip = 0xC0A80002;
struct ipstack s;
ipstack_init(&s);
mock_link_init(&s);
s.last_tick = 1000;
arp_request(&s, target_ip);
ck_assert_int_eq(((struct arp_packet *)(last_frame_sent))->tip, ee32(target_ip));
}
END_TEST
START_TEST(test_arp_request_handling) {
struct arp_packet arp_req;
struct arp_packet *arp_reply;
memset(&arp_req, 0, sizeof(arp_req));
uint32_t req_ip = 0xC0A80002; // 192.168.0.2
uint32_t device_ip = 0xC0A80001; // 192.168.0.1
uint8_t req_mac[6] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};
//uint8_t mac[6] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};
struct ipstack s;
ipstack_init(&s);
mock_link_init(&s);
s.ipconf.ip = device_ip;
/* Prepare ARP request */
arp_req.opcode = ee16(ARP_REQUEST);
arp_req.sip = ee32(req_ip);
memcpy(arp_req.sma, req_mac, 6);
arp_req.tip = ee32(device_ip);
/* Call arp_recv with the ARP request */
arp_recv(&s, &arp_req, sizeof(arp_req));
ipstack_poll(&s, 1000);
ipstack_poll(&s, 1001);
ipstack_poll(&s, 1002);
/* Check if ARP table updated with requester's MAC and IP */
/* TODO */
//ck_assert_int_eq(arp_lookup(&s, req_ip, mac), 0);
//ck_assert_mem_eq(mac, req_mac, 6);
/* Check if an ARP reply was generated */
arp_reply = (struct arp_packet *)last_frame_sent;
ck_assert_int_eq(last_frame_sent_size, sizeof(struct arp_packet));
ck_assert_int_eq(arp_reply->opcode, ee16(ARP_REPLY));
ck_assert_mem_eq(arp_reply->sma, s.ll_dev.mac, 6); // source MAC
ck_assert_int_eq(arp_reply->sip, ee32(device_ip)); // source IP
ck_assert_mem_eq(arp_reply->tma, req_mac, 6); // target MAC
ck_assert_int_eq(arp_reply->tip, ee32(req_ip)); // target IP
}
END_TEST
START_TEST(test_arp_reply_handling) {
struct arp_packet arp_reply;
memset(&arp_reply, 0, sizeof(arp_reply));
uint32_t reply_ip = 0xC0A80003; // 192.168.0.3
uint8_t reply_mac[6] = {0xDE, 0xAD, 0xBE, 0xEF, 0x00, 0x01};
struct ipstack s;
ipstack_init(&s);
mock_link_init(&s);
/* Prepare ARP reply */
arp_reply.opcode = ee16(ARP_REPLY);
arp_reply.sip = ee32(reply_ip);
memcpy(arp_reply.sma, reply_mac, 6);
/* Call arp_recv with the ARP reply */
arp_recv(&s, &arp_reply, sizeof(arp_reply));
/* Check if ARP table updated with reply IP and MAC */
ck_assert_int_eq(s.arp.neighbors[0].ip, reply_ip);
ck_assert_mem_eq(s.arp.neighbors[0].mac, reply_mac, 6);
/* Update same IP with a different MAC address */
uint8_t new_mac[6] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06};
memcpy(arp_reply.sma, new_mac, 6);
arp_recv(&s, &arp_reply, sizeof(arp_reply));
/* Check if ARP table updates with new MAC */
ck_assert_mem_eq(s.arp.neighbors[0].mac, new_mac, 6);
}
END_TEST
START_TEST(test_arp_lookup_success) {
uint8_t found_mac[6];
uint32_t ip = 0xC0A80002;
const uint8_t mock_mac[6] = {0xDE, 0xAD, 0xBE, 0xEF, 0x00, 0x01};
struct ipstack s;
ipstack_init(&s);
mock_link_init(&s);
/* Add a known IP-MAC pair */
s.arp.neighbors[0].ip = ip;
memcpy(s.arp.neighbors[0].mac, mock_mac, 6);
/* Test arp_lookup */
int result = arp_lookup(&s, ip, found_mac);
ck_assert_int_eq(result, 0);
ck_assert_mem_eq(found_mac, mock_mac, 6);
}
END_TEST
START_TEST(test_arp_lookup_failure) {
uint8_t found_mac[6];
uint32_t ip = 0xC0A80004;
struct ipstack s;
ipstack_init(&s);
mock_link_init(&s);
/* Ensure arp_lookup fails for unknown IP */
int result = arp_lookup(&s, ip, found_mac);
ck_assert_int_eq(result, -1);
uint8_t zero_mac[6] = {0, 0, 0, 0, 0, 0};
ck_assert_mem_eq(found_mac, zero_mac, 6);
}
END_TEST
// Test for `transport_checksum` calculation
START_TEST(test_transport_checksum) {
union transport_pseudo_header ph;
struct ipstack_tcp_seg tcp_data;
memset(&ph, 0, sizeof(ph));
memset(&tcp_data, 0, sizeof(tcp_data));
// Set up pseudo-header values for test
ph.ph.src = 0xc0a80101; // 192.168.1.1
ph.ph.dst = 0xc0a80102; // 192.168.1.2
ph.ph.proto = IPPROTO_TCP;
ph.ph.len = ee16(20); // TCP header length (without options)
// Test with a simple TCP header with src/dst ports and no data
tcp_data.src_port = ee16(12345);
tcp_data.dst_port = ee16(80);
tcp_data.seq = ee32(1);
tcp_data.ack = ee32(0);
tcp_data.hlen = 5; // offset=5 (20 bytes)
tcp_data.flags = 0x02; // SYN
tcp_data.win = ee16(65535);
uint16_t checksum = transport_checksum(&ph, &tcp_data.src_port);
ck_assert_msg(checksum != 0, "Transport checksum should not be zero");
}
END_TEST
// Test for `iphdr_set_checksum` calculation
START_TEST(test_iphdr_set_checksum) {
struct ipstack_ip_packet ip;
memset(&ip, 0, sizeof(ip));
ip.ver_ihl = 0x45;
ip.tos = 0;
ip.len = ee16(20);
ip.id = ee16(1);
ip.flags_fo = 0;
ip.ttl = 64;
ip.proto = IPPROTO_TCP;
ip.src = ee32(0xc0a80101); // 192.168.1.1
ip.dst = ee32(0xc0a80102); // 192.168.1.2
iphdr_set_checksum(&ip);
ck_assert_msg(ip.csum != 0, "IP header checksum should not be zero");
}
END_TEST
// Test for `eth_output_add_header` to add Ethernet headers
START_TEST(test_eth_output_add_header) {
struct ipstack_eth_frame eth_frame;
struct ipstack S;
memset(&S, 0, sizeof(S));
memset(&eth_frame, 0, sizeof(eth_frame));
uint8_t test_mac[6] = {0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
memcpy(S.ll_dev.mac, test_mac, 6);
eth_output_add_header(&S, NULL, &eth_frame, ETH_TYPE_IP);
ck_assert_mem_eq(eth_frame.dst, "\xff\xff\xff\xff\xff\xff", 6); // Broadcast
ck_assert_mem_eq(eth_frame.src, test_mac, 6);
ck_assert_uint_eq(eth_frame.type, ee16(ETH_TYPE_IP));
}
END_TEST
// Test for `ip_output_add_header` to set up IP headers and calculate checksums
START_TEST(test_ip_output_add_header) {
struct tsocket t;
struct ipstack_ip_packet ip;
struct ipstack S;
memset(&t, 0, sizeof(t));
memset(&ip, 0, sizeof(ip));
memset(&S, 0, sizeof(S));
// Setup socket and IP stack parameters
t.local_ip = 0xc0a80101; // 192.168.1.1
t.remote_ip = 0xc0a80102; // 192.168.1.2
t.S = &S;
// Run the function for a TCP packet
int result = ip_output_add_header(&t, &ip, IPPROTO_TCP, 40);
ck_assert_int_eq(result, 0);
// Validate IP header fields
ck_assert_uint_eq(ip.ver_ihl, 0x45);
ck_assert_uint_eq(ip.ttl, 64);
ck_assert_uint_eq(ip.proto, IPPROTO_TCP);
ck_assert_uint_eq(ip.src, ee32(t.local_ip));
ck_assert_uint_eq(ip.dst, ee32(t.remote_ip));
ck_assert_msg(ip.csum != 0, "IP header checksum should not be zero");
// Check the pseudo-header checksum calculation for TCP segment
struct ipstack_tcp_seg *tcp = (struct ipstack_tcp_seg *)&ip;
ck_assert_msg(tcp->csum != 0, "TCP checksum should not be zero");
}
END_TEST
Suite *femto_suite(void)
{
Suite *s;
TCase *tc_core, *tc_proto, *tc_utils;
s = suite_create("FemtoTCP");
tc_core = tcase_create("Core");
tc_utils = tcase_create("Utils");
tc_proto = tcase_create("Protocols");
tcase_add_test(tc_core, test_fifo_init);
suite_add_tcase(s, tc_core);
suite_add_tcase(s, tc_utils);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_core, test_fifo_push_and_pop);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_push_and_pop_multiple);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_pop_success);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_pop_empty);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_push_full);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_push_wrap);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_push_wrap_multiple);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_next_success);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_next_empty_fifo);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_fifo_next_end_of_fifo);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_init);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_space_empty);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_len_empty);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_partial_fill);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_wrap_around);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_insert_empty);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_insert_sequential);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_pop);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_core, test_queue_pop_wraparound);
suite_add_tcase(s, tc_core);
tcase_add_test(tc_utils, test_insert_timer);
suite_add_tcase(s, tc_utils);
tcase_add_test(tc_utils, test_pop_timer);
suite_add_tcase(s, tc_utils);
tcase_add_test(tc_utils, test_is_timer_expired);
suite_add_tcase(s, tc_utils);
tcase_add_test(tc_utils, test_cancel_timer);
suite_add_tcase(s, tc_utils);
tcase_add_test(tc_proto, test_arp_request_basic);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_proto, test_arp_request_throttle);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_proto, test_arp_request_target_ip);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_proto, test_arp_request_handling);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_proto, test_arp_reply_handling);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_proto, test_arp_lookup_success);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_proto, test_arp_lookup_failure);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_utils, test_transport_checksum);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_utils, test_iphdr_set_checksum);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_utils, test_eth_output_add_header);
suite_add_tcase(s, tc_proto);
tcase_add_test(tc_utils, test_ip_output_add_header);
suite_add_tcase(s, tc_proto);
return s;
}
int main(void)
{
int n_fail = 0;
Suite *s;
SRunner *sr;
s = femto_suite();
sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
n_fail = srunner_ntests_failed(sr);
srunner_free(sr);
return (n_fail == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}