/** @defgroup rcc_file RCC * * @ingroup STM32F3xx * * @brief unicore-mx STM32F3xx Reset and Clock Control * * @version 1.0.0 * * @date 11 July 2013 * * LGPL License Terms @ref lgpl_license */ /* * Copyright (C) 2009 Federico Ruiz-Ugalde * Copyright (C) 2009 Uwe Hermann * Copyright (C) 2010 Thomas Otto * Modified by 2013 Fernando Cortes (stm32f3) * Modified by 2013 Guillermo Rivera (stm32f3) * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default clock frequencies after reset. */ uint32_t rcc_ahb_frequency = 8000000; uint32_t rcc_apb1_frequency = 8000000; uint32_t rcc_apb2_frequency = 8000000; const struct rcc_clock_scale rcc_hsi_8mhz[RCC_CLOCK_END] = { { /* 44MHz */ .pll = RCC_CFGR_PLLMUL_PLL_IN_CLK_X11, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_DIV_NONE, .ppre1 = RCC_CFGR_PPRE1_DIV_2, .ppre2 = RCC_CFGR_PPRE2_DIV_NONE, .flash_config = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY_1WS, .ahb_frequency = 44000000, .apb1_frequency = 22000000, .apb2_frequency = 44000000, }, { /* 48MHz */ .pll = RCC_CFGR_PLLMUL_PLL_IN_CLK_X12, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_DIV_NONE, .ppre1 = RCC_CFGR_PPRE1_DIV_2, .ppre2 = RCC_CFGR_PPRE2_DIV_NONE, .flash_config = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY_1WS, .ahb_frequency = 48000000, .apb1_frequency = 24000000, .apb2_frequency = 48000000, }, { /* 64MHz */ .pll = RCC_CFGR_PLLMUL_PLL_IN_CLK_X16, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_DIV_NONE, .ppre1 = RCC_CFGR_PPRE1_DIV_2, .ppre2 = RCC_CFGR_PPRE2_DIV_NONE, .flash_config = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY_2WS, .ahb_frequency = 64000000, .apb1_frequency = 32000000, .apb2_frequency = 64000000, } }; void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYC; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYC; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYC; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYC; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYC; break; } } void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYIE; break; } } void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR &= ~RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR &= ~RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR &= ~RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR &= ~RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR &= ~RCC_CIR_LSIRDYIE; break; } } int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0); break; case RCC_HSE: return ((RCC_CIR & RCC_CIR_HSERDYF) != 0); break; case RCC_HSI: return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0); break; case RCC_LSE: return ((RCC_CIR & RCC_CIR_LSERDYF) != 0); break; case RCC_LSI: return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0); break; } cm3_assert_not_reached(); } void rcc_css_int_clear(void) { RCC_CIR |= RCC_CIR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIR & RCC_CIR_CSSF) != 0); } void rcc_wait_for_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while ((RCC_CR & RCC_CR_PLLRDY) == 0); break; case RCC_HSE: while ((RCC_CR & RCC_CR_HSERDY) == 0); break; case RCC_HSI: while ((RCC_CR & RCC_CR_HSIRDY) == 0); break; case RCC_LSE: while ((RCC_BDCR & RCC_BDCR_LSERDY) == 0); break; case RCC_LSI: while ((RCC_CSR & RCC_CSR_LSIRDY) == 0); break; } } void rcc_wait_for_osc_not_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while ((RCC_CR & RCC_CR_PLLRDY) != 0); break; case RCC_HSE: while ((RCC_CR & RCC_CR_HSERDY) != 0); break; case RCC_HSI: while ((RCC_CR & RCC_CR_HSIRDY) != 0); break; case RCC_LSE: while ((RCC_BDCR & RCC_BDCR_LSERDY) != 0); break; case RCC_LSI: while ((RCC_CSR & RCC_CSR_LSIRDY) != 0); break; } } void rcc_wait_for_sysclk_status(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_PLL); break; case RCC_HSE: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_HSE); break; case RCC_HSI: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_HSI); break; default: /* Shouldn't be reached. */ break; } } void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; } } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_osc_bypass_enable(enum rcc_osc osc) { switch (osc) { case RCC_HSE: RCC_CR |= RCC_CR_HSEBYP; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEBYP; break; case RCC_PLL: case RCC_HSI: case RCC_LSI: /* Do nothing, only HSE/LSE allowed here. */ break; } } void rcc_osc_bypass_disable(enum rcc_osc osc) { switch (osc) { case RCC_HSE: RCC_CR &= ~RCC_CR_HSEBYP; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEBYP; break; case RCC_PLL: case RCC_HSI: case RCC_LSI: /* Do nothing, only HSE/LSE allowed here. */ break; } } void rcc_set_sysclk_source(uint32_t clk) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 1) | (1 << 0)); RCC_CFGR = (reg32 | clk); } void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~RCC_CFGR_PLLSRC; RCC_CFGR = (reg32 | (pllsrc << 16)); } void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT); RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT); RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT); RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT)); } /** * Set PLL Source pre-divider **CAUTION**. * On some F3 devices, prediv only applies to HSE source. On others, * this is _after_ source selection. See also f0. * @param[in] prediv division by prediv+1 @ref rcc_cfgr2_prediv */ void rcc_set_prediv(uint32_t prediv) { RCC_CFGR2 = (RCC_CFGR2 & ~RCC_CFGR2_PREDIV) | prediv; } void rcc_set_pll_multiplier(uint32_t pll) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PLLMUL_MASK << RCC_CFGR_PLLMUL_SHIFT); RCC_CFGR = (reg32 | (pll << RCC_CFGR_PLLMUL_SHIFT)); } uint32_t rcc_get_system_clock_source(void) { /* Return the clock source which is used as system clock. */ return (RCC_CFGR & 0x000c) >> 2; } void rcc_clock_setup_hsi(const struct rcc_clock_scale *clock) { /* Enable internal high-speed oscillator. */ rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); /* Select HSI as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_HSI); /* XXX: se cayo */ rcc_wait_for_sysclk_status(RCC_HSI); rcc_osc_off(RCC_PLL); rcc_wait_for_osc_not_ready(RCC_PLL); rcc_set_pll_source(clock->pllsrc); rcc_set_pll_multiplier(clock->pll); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* * Set prescalers for AHB, ADC, ABP1, ABP2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre2(clock->ppre2); rcc_set_ppre1(clock->ppre1); /* Configure flash settings. */ flash_set_ws(clock->flash_config); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* XXX: se cayo */ /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the peripheral clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } void rcc_backupdomain_reset(void) { /* Set the backup domain software reset. */ RCC_BDCR |= RCC_BDCR_BDRST; /* Clear the backup domain software reset. */ RCC_BDCR &= ~RCC_BDCR_BDRST; } void rcc_set_i2c_clock_hsi(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 &= ~RCC_CFGR3_I2C1SW; } if (i2c == I2C2) { RCC_CFGR3 &= ~RCC_CFGR3_I2C2SW; } } void rcc_set_i2c_clock_sysclk(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 |= RCC_CFGR3_I2C1SW; } if (i2c == I2C2) { RCC_CFGR3 |= RCC_CFGR3_I2C2SW; } } uint32_t rcc_get_i2c_clocks(void) { return RCC_CFGR3 & (RCC_CFGR3_I2C1SW | RCC_CFGR3_I2C2SW); } void rcc_usb_prescale_1_5(void) { RCC_CFGR &= ~RCC_CFGR_USBPRES; } void rcc_usb_prescale_1(void) { RCC_CFGR |= RCC_CFGR_USBPRES; } void rcc_adc_prescale(uint32_t prescale1, uint32_t prescale2) { uint32_t clear_mask = (RCC_CFGR2_ADCxPRES_MASK << RCC_CFGR2_ADC12PRES_SHIFT) | (RCC_CFGR2_ADCxPRES_MASK << RCC_CFGR2_ADC34PRES_SHIFT); uint32_t set = (prescale1 << RCC_CFGR2_ADC12PRES_SHIFT) | (prescale2 << RCC_CFGR2_ADC34PRES_SHIFT); RCC_CFGR2 &= ~(clear_mask); RCC_CFGR2 |= (set); } /**@}*/