wrk
This commit is contained in:
parent
379a7bc5b8
commit
a0e18e2bad
1 changed files with 38 additions and 5 deletions
|
@ -14,6 +14,7 @@ import numpy as np
|
||||||
import librosa
|
import librosa
|
||||||
import math
|
import math
|
||||||
from scipy.interpolate import interp1d
|
from scipy.interpolate import interp1d
|
||||||
|
from scipy.interpolate import UnivariateSpline
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
def plotting_stuffs():
|
def plotting_stuffs():
|
||||||
|
@ -30,14 +31,46 @@ def plotting_stuffs():
|
||||||
x = np.linspace(1, 4000, 4000)
|
x = np.linspace(1, 4000, 4000)
|
||||||
y = f(x)
|
y = f(x)
|
||||||
|
|
||||||
plt.plot(x, y)
|
#plt.plot(x, y)
|
||||||
plt.show()
|
#plt.show()
|
||||||
|
|
||||||
|
|
||||||
plt.hist(rms[0], color = 'red', edgecolor = 'black', bins = 10)
|
plt.hist(rms[0], color = 'red', edgecolor = 'black', bins = 10)
|
||||||
plt.show()
|
plt.show()
|
||||||
plt.hist(cent[0], color = 'blue', edgecolor = 'black', bins = int(cent.max()/100))
|
|
||||||
|
# Generate some example data
|
||||||
|
data =cent[0]
|
||||||
|
|
||||||
|
# Create a histogram
|
||||||
|
hist, bin_edges = np.histogram(data, bins=100, density=True)
|
||||||
|
|
||||||
|
# Calculate bin centers
|
||||||
|
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
|
||||||
|
|
||||||
|
# Perform spline interpolation on the histogram data
|
||||||
|
spline = UnivariateSpline(bin_centers, hist, s=0)
|
||||||
|
|
||||||
|
# Create a finer x-axis for plotting the interpolated function
|
||||||
|
x_interp = np.linspace(min(bin_centers), max(bin_centers), 1000)
|
||||||
|
y_interp = spline(x_interp)
|
||||||
|
|
||||||
|
# Plot the histogram and the interpolated function
|
||||||
|
plt.hist(data, bins=100, density=True, alpha=0.6, color='g', label='Histogram')
|
||||||
|
plt.plot(x_interp, y_interp, label='Interpolated PDF', color='red')
|
||||||
|
plt.legend()
|
||||||
|
plt.xlabel('x')
|
||||||
|
plt.ylabel('Probability Density')
|
||||||
|
plt.title('Histogram and Interpolated PDF')
|
||||||
|
# Obtain min and max values of the probability density
|
||||||
|
min_density = np.min(hist)
|
||||||
|
max_density = np.max(hist)
|
||||||
|
|
||||||
|
print(f"Min Probability Density: {min_density}")
|
||||||
|
print(f"Max Probability Density: {max_density}")
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def f(t):
|
def f(t):
|
||||||
return 1.0025+0.002*np.sin(1.25*3.14*t/30)
|
return 1.0025+0.002*np.sin(1.25*3.14*t/30)
|
||||||
|
@ -49,12 +82,12 @@ strength_max = 0.6
|
||||||
|
|
||||||
|
|
||||||
# Assuming that into "generated" directoruy U've already create "project_name" subfolder
|
# Assuming that into "generated" directoruy U've already create "project_name" subfolder
|
||||||
audio_input_file = '/home/lalo/data/studio_grafica/deforum/wilson_r1_mm_sample.wav'
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/wilson_r1_mm_sample.wav'
|
||||||
#audio_input_file = '/home/lalo/data/studio_suono/spx/231104_001_m01.wav'
|
#audio_input_file = '/home/lalo/data/studio_suono/spx/231104_001_m01.wav'
|
||||||
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_r1_sample.wav'
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_r1_sample.wav'
|
||||||
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_r1.wav'
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_r1.wav'
|
||||||
#audio_input_file = '/home/lalo/data/studio_suono/231014_002_mastered_r2_clip.WAV'
|
#audio_input_file = '/home/lalo/data/studio_suono/231014_002_mastered_r2_clip.WAV'
|
||||||
#audio_input_file = 'C:/Users/LucaConte/Music/lc_music/wilson_r1_mm.wav'
|
audio_input_file = 'C:/Users/LucaConte/Music/lc_music/wilson_r1_mm.wav'
|
||||||
|
|
||||||
|
|
||||||
# Store the sampling rate as `sr`
|
# Store the sampling rate as `sr`
|
||||||
|
|
Loading…
Reference in a new issue