614 lines
22 KiB
Python
614 lines
22 KiB
Python
from enum import Enum
|
|
import os
|
|
import numpy as np
|
|
import librosa
|
|
import math
|
|
from scipy.interpolate import interp1d
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
import random
|
|
import shutil
|
|
import subprocess
|
|
import tempfile
|
|
import textwrap
|
|
|
|
import click
|
|
import tensorflow as tf
|
|
from PIL import Image, ImageEnhance
|
|
|
|
from noisemaker.composer import EFFECT_PRESETS, GENERATOR_PRESETS, reload_presets
|
|
from noisemaker.constants import ColorSpace, ValueDistribution
|
|
from noisemaker.presets import PRESETS
|
|
|
|
import noisemaker.ai as ai
|
|
import noisemaker.dreamer as dreamer
|
|
import noisemaker.cli as cli
|
|
import noisemaker.generators as generators
|
|
import noisemaker.effects as effects
|
|
import noisemaker.util as util
|
|
import noisemaker.value as value
|
|
|
|
MAX_SEED_VALUE = 2 ** 32 - 1
|
|
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
|
|
reload_presets(PRESETS)
|
|
|
|
@click.group(context_settings=cli.CLICK_CONTEXT_SETTINGS)
|
|
def main():
|
|
pass
|
|
|
|
|
|
def anlyzeSound(audio_input_file):
|
|
# Assuming that into "generated" directoruy U've already create "project_name" subfolder
|
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/stars_clip_r2.wav'
|
|
#audio_input_file = '/home/lalo/data/studio_suono/ardourprojects/space/export/star_r1_sessione_20240310_msub07.wav'
|
|
#audio_input_file = '/home/lalo/data/studio_suono/spx/231104_001_m01.wav'
|
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_r1_sample.wav'
|
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_r1.wav'
|
|
#audio_input_file = '/home/lalo/data/studio_grafica/deforum/eucrasy_short_r1.wav'
|
|
#audio_input_file = '/home/lalo/data/studio_suono/231014_002_mastered_r2_clip.WAV'
|
|
#audio_input_file = 'C:/Users/LucaConte/Music/lc_music/wilson_r1_mm.wav'
|
|
# Store the sampling rate as `sr`
|
|
|
|
|
|
fps = 24
|
|
|
|
flength = 22050//fps
|
|
#audio frame size is 22050/30=735
|
|
|
|
|
|
|
|
wave, sr = librosa.load(audio_input_file)
|
|
rms = librosa.feature.rms(y=wave, frame_length=flength, hop_length=flength)
|
|
|
|
#rms = librosa.feature.rms(y=wave, frame_length=735, hop_length=735)
|
|
cent = librosa.feature.spectral_centroid(y=wave, sr=sr,n_fft=flength, hop_length=flength)
|
|
|
|
zcr = librosa.feature.zero_crossing_rate(y=wave, frame_length=flength, hop_length=flength)
|
|
duration = int(math.ceil(librosa.get_duration(y=wave, sr=sr)))
|
|
|
|
#frames = duration * fps
|
|
|
|
|
|
#:w
|
|
# sr.len /22050 = duration
|
|
# rms.len * 30 = duration
|
|
# rms[i] mi da la potenza media del frame iesimo
|
|
|
|
#generateSoundVariations("bubble-machine", 3793866858, rms,5000,7500)
|
|
#generateSoundVariations("sands-of-time", 2226183906, rms,-1,2500)
|
|
#generateSoundVariations("sands-of-time", 2226183906, rms,2500,5000)
|
|
#generateSoundVariations("sands-of-time", 2226183906, rms,5000,7500)
|
|
#generateSoundVariations("sands-of-time", 2226183906, rms,7500,10000)
|
|
#generateSoundVariations("sands-of-time", 2226183906, rms,10000,10333)
|
|
#generateSamples()
|
|
#postprocessBrightness("/tmp/",cent, 8316,10000)
|
|
return rms, cent, zcr
|
|
|
|
def width_option(default=1024, **attrs):
|
|
attrs.setdefault("help", "Output width, in pixels")
|
|
|
|
return int_option("--width", default=default, **attrs)
|
|
#gli estremi frame start e frame stop sono esclusi
|
|
# python sampler.py genframes --width 666 --height 666 --preset bubble-machine --framestart 1 --framestop 55
|
|
|
|
|
|
@main.command()
|
|
@click.option('--width', required=True, type=int, default=1024)
|
|
@click.option('--height', required=True, type=int, default=1024)
|
|
@click.option('--seed', required=False, type=int, default=None)
|
|
@click.option('--out-dir', required=True, type=str, default=tempfile.gettempdir())
|
|
@click.option('--framestart', required=False, type=int, default=1)
|
|
@click.option('--framestop', required=False, type=int, default=-1)
|
|
@click.option('--audiofile', required=True, type=str, default='./dummy.wav')
|
|
@click.option('--preset', type=click.Choice(["random"] + sorted(GENERATOR_PRESETS)))
|
|
@click.pass_context
|
|
def genframes(ctx,width, height,preset, seed, framestart, framestop, audiofile, out_dir):
|
|
rms, centroids, zcr = anlyzeSound(audiofile)
|
|
|
|
|
|
|
|
if not seed:
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
|
|
print(f"(total frames: {len(rms[0])}) (framestart: {framestart}) (framestop: {framestop})")
|
|
time_dividend =500
|
|
s = interp1d([min(rms[0]), max(rms[0])], [0, 0.9])
|
|
trms=rms[0]
|
|
mean = np.mean(trms)
|
|
if framestop<0:
|
|
framestop = len(rms[0])
|
|
for frame in range(framestart, framestop):
|
|
try:
|
|
speed=abs(mean - float(format(trms[frame], '.3f')))
|
|
#speed=float(format(trms[frame], '.3f'))
|
|
#print(f"(speed: {speed}) (trms: {trms[frame]}) )")
|
|
time = (float)((frame % time_dividend)/time_dividend)
|
|
filename = out_dir+ '/' + preset + "_" + str(seed)+ "_" + str(frame).zfill(10) +".png"
|
|
print(f"(speed: {speed}) (time: {time}) (filename: {filename})")
|
|
generate(1080,1080,time,speed,seed,filename,False,False,False,False,False,False,"",False,False,preset)
|
|
#generate(1024,1024,ftime,1,seed,"/tmp/" + str(frame).zfill(10) +".png",False,False,False,False,False,False,"",False,False,preset_name)
|
|
#generate(1024,1024,0.0,ftime,seed,"/tmp/" + str(frame).zfill(10) +"_" + preset_name + ".png",False,False,False,False,False,False,"",False,False,preset_name)
|
|
except Exception as e:
|
|
print(f"Exception {e} on Preset: {preset}")
|
|
continue
|
|
|
|
|
|
@main.command()
|
|
@click.pass_context
|
|
def testpillow(ctx):
|
|
image = Image.open('/tmp/the-inward-spiral_3917354306_0_0.23284526795328386.png')
|
|
brightness_factor = 3.5 # Increase brightness by 50%
|
|
enhancer = ImageEnhance.Brightness(image)
|
|
brightened_image = enhancer.enhance(brightness_factor)
|
|
contrast_factor = 4.2 # Increase contrast by 20%
|
|
enhancer = ImageEnhance.Contrast(image)
|
|
contrasted_image = enhancer.enhance(contrast_factor)
|
|
brightened_image.save("/tmp/alt/brightened_image.png")
|
|
contrasted_image.save("/tmp/alt/contrasted_image.png")
|
|
|
|
def postprocessBrightness(srcdir,centroids,framemin=0,framemax=9999999999):
|
|
|
|
c = interp1d([centroids.min(), centroids.max()], [1, 4.5])
|
|
items = os.listdir(srcdir)
|
|
sorted_items = sorted(items)
|
|
for f in sorted_items:
|
|
if f.endswith(".png"):
|
|
frame = int(f.split("_")[-1].split(".")[0])@click.command(context_settings=dict(
|
|
ignore_unknown_options=True,
|
|
))
|
|
if frame >= framemin and frame < framemax:
|
|
image = Image.open(srcdir+f)
|
|
enhancer = ImageEnhance.Brightness(image)
|
|
brightened_image = enhancer.enhance(c(centroids[0][frame]))
|
|
print(f'File: {f}')
|
|
brightened_image.save(srcdir+"b_"+f)
|
|
|
|
|
|
def testCombinedVariations(preset_name):
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
times = 0
|
|
for speed in range(0,999,1):
|
|
try:
|
|
if(times == 0):
|
|
times = random.randint(1, 30)
|
|
time = round(random.uniform(0, 1), 1)
|
|
fspeed = (float)(speed/100)
|
|
filename = "/tmp/"+ preset_name + "_" + str(seed)+ "_" + str(speed).zfill(10) +".png"
|
|
print(f"(speed: {speed}) (time: {time}) (times: {times}) (filename: {filename})")
|
|
times -= 1
|
|
#generate(600,600,time,fspeed,seed,filename,False,False,False,False,False,False,"",False,False,preset_name)
|
|
except Exception as e:
|
|
print(f"Exception on Preset: {preset_name}")
|
|
continue
|
|
|
|
|
|
def generateSpeedVariations(preset_name):
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
for speed in range(0,999,1):
|
|
try:
|
|
generate(600,600,0.1,speed,seed,"/tmp/"+ preset_name + "_" + str(seed)+ "_" + str(speed).zfill(10) +".png",False,False,False,False,False,False,"",False,False,preset_name)
|
|
except Exception as e:
|
|
print(f"Exception on Preset: {preset_name}")
|
|
continue
|
|
|
|
@main.command()
|
|
@click.option('--iterations', required=False, type=int, default=100)
|
|
@click.option('--preset', type=click.Choice(["random"] + sorted(GENERATOR_PRESETS)))
|
|
@click.pass_context
|
|
def gentimevariations(ctx,preset,iterations):
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
speed = random.random()
|
|
for time in range(0, iterations, 1):
|
|
try:
|
|
ftime = (float)(time/iterations)
|
|
print(str(ftime))
|
|
filename = tempfile.gettempdir() + "/" + preset+ "_" + str(seed) + "_" + str(time) + "_" + str(speed) + ".png"
|
|
generate(600,600,ftime,speed,seed, filename,False,False,False,False,False,False,"",False,False,preset)
|
|
except Exception as e:
|
|
print(f"Exception on Preset: {preset}")
|
|
continue
|
|
|
|
@main.command()
|
|
@click.pass_context
|
|
def gensamples(ctx):
|
|
for preset_name, preset_data in PRESETS().items():
|
|
try:
|
|
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
time = random.random()
|
|
speed = random.random()
|
|
filename = tempfile.gettempdir() + "/" + preset_name + "_" + str(seed) + "_" + str(time)+ "_" + str(speed) + ".png"
|
|
print(f"Going to generate: {filename}")
|
|
generate(1024, 1024, time, speed, seed, filename ,
|
|
False, False, False, False, False, False, "", False, False, preset_name)
|
|
except Exception as e:
|
|
print(f"Exception on Preset: {preset_name}")
|
|
continue
|
|
|
|
|
|
@main.command()
|
|
@click.option('--iterations', required=False, type=int, default=10)
|
|
@click.option('--preset', type=click.Choice(["random"] + sorted(GENERATOR_PRESETS)))
|
|
@click.pass_context
|
|
def genseedsvariations(ctx,preset,iterations):
|
|
for i in range(iterations):
|
|
try:
|
|
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
time = random.random()
|
|
speed = random.random()
|
|
filename = tempfile.gettempdir() + "/" + preset + "_" + str(seed) + "_" + str(time) + "_" + str(
|
|
speed) + ".png"
|
|
print(f"Going to generate: {filename}")
|
|
generate(1024, 1024, time, speed, seed, filename,
|
|
False, False, False, False, False, False, "", False, False, preset)
|
|
except Exception as e:
|
|
print(f"Exception on Preset: {preset}")
|
|
continue
|
|
|
|
|
|
def generate(width, height, time, speed, seed, filename, with_alpha, with_supersample, with_fxaa, with_ai, with_upscale,
|
|
with_alt_text, stability_model, debug_print, debug_out, preset_name):
|
|
if not seed:
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
|
|
value.set_seed(seed)
|
|
reload_presets(PRESETS)
|
|
|
|
if preset_name == "random":
|
|
preset_name = list(GENERATOR_PRESETS)[random.randint(0, len(GENERATOR_PRESETS) - 1)]
|
|
|
|
preset = GENERATOR_PRESETS[preset_name]
|
|
|
|
if debug_print or debug_out:
|
|
debug_text = _debug_print(seed, preset, with_alpha, with_supersample, with_fxaa, with_ai, with_upscale, stability_model)
|
|
|
|
if debug_print:
|
|
for line in debug_text:
|
|
print(line)
|
|
|
|
if debug_out is not None:
|
|
with open(debug_out, 'w') as fh:
|
|
for line in debug_text:
|
|
fh.write(line + "\n")
|
|
|
|
try:
|
|
preset.render(seed, shape=[height, width, None], time=time, speed=speed, filename=filename,
|
|
with_alpha=with_alpha, with_supersample=with_supersample, with_fxaa=with_fxaa,
|
|
with_ai=with_ai, with_upscale=with_upscale, stability_model=stability_model)
|
|
|
|
except Exception as e:
|
|
util.logger.error(f"preset.render() failed: {e}\nSeed: {seed}\nArgs: {preset.__dict__}")
|
|
raise
|
|
|
|
if preset.ai_success:
|
|
print(f"{preset_name} vs. {preset.ai_settings['model']} (seed: {seed})")
|
|
|
|
else:
|
|
print(f"{preset_name} (seed: {seed})")
|
|
|
|
if with_alt_text:
|
|
print(ai.describe(preset.name.replace('-', ' '), preset.ai_settings.get("prompt"), filename))
|
|
|
|
|
|
def _debug_print(seed, preset, with_alpha, with_supersample, with_fxaa, with_ai, with_upscale, stability_model):
|
|
first_column = ["Layers:"]
|
|
|
|
if preset.flattened_layers:
|
|
first_column.append(" - Lineage (by newest):")
|
|
|
|
if not preset.flattened_layers:
|
|
first_column.append(" - None")
|
|
|
|
for parent in reversed(preset.flattened_layers):
|
|
first_column.append(f" - {parent}")
|
|
|
|
first_column.append("")
|
|
first_column.append(" - Effects (by newest):")
|
|
|
|
if not preset.final_effects and not with_ai and not preset.post_effects:
|
|
first_column.append(" - None")
|
|
first_column.append("")
|
|
|
|
if preset.final_effects:
|
|
first_column.append(" - Final Pass:")
|
|
|
|
for effect in reversed(preset.final_effects):
|
|
if callable(effect):
|
|
first_column.append(f" - {effect.func.__name__.replace('_', ' ')}")
|
|
else:
|
|
first_column.append(f" - {effect.name.replace('_', ' ').replace('-', ' ')}")
|
|
|
|
first_column.append("")
|
|
|
|
if with_ai:
|
|
first_column.append(f" - AI Settings:")
|
|
|
|
for (k, v) in sorted(preset.ai_settings.items()):
|
|
if stability_model and k == 'model':
|
|
v = stability_model
|
|
|
|
for i, line in enumerate(textwrap.wrap(f"{k.replace('_', ' ')}: {v}", 42)):
|
|
if i == 0:
|
|
first_column.append(f" - {line}")
|
|
else:
|
|
first_column.append(f" {line}")
|
|
|
|
first_column.append("")
|
|
|
|
if preset.post_effects or with_ai:
|
|
first_column.append(" - Post Pass:")
|
|
|
|
if with_ai:
|
|
first_column.append(" - stable diffusion")
|
|
|
|
for effect in reversed(preset.post_effects):
|
|
if callable(effect):
|
|
first_column.append(f" - {effect.func.__name__.replace('_', ' ')}")
|
|
else:
|
|
first_column.append(f" - {effect.name.replace('_', ' ').replace('-', ' ')}")
|
|
|
|
first_column.append("")
|
|
|
|
if preset.octave_effects:
|
|
first_column.append(" - Per-Octave Pass:")
|
|
|
|
for effect in reversed(preset.octave_effects):
|
|
if callable(effect):
|
|
first_column.append(f" - {effect.func.__name__.replace('_', ' ')}")
|
|
else:
|
|
first_column.append(f" - {effect.name.replace('_', ' ').replace('-', ' ')}")
|
|
|
|
first_column.append("")
|
|
|
|
first_column.append("Canvas:")
|
|
first_column.append(f" - seed: {seed}")
|
|
first_column.append(f" - with alpha: {with_alpha}")
|
|
first_column.append(f" - with supersample: {with_supersample}")
|
|
first_column.append(f" - with fxaa: {with_fxaa}")
|
|
first_column.append(f" - with upscale: {with_upscale}")
|
|
first_column.append("")
|
|
|
|
second_column = ["Settings:"]
|
|
for (k, v) in sorted(preset.settings.items()):
|
|
if isinstance(v, Enum):
|
|
second_column.append(f" - {k.replace('_', ' ')}: {v.name.replace('_', ' ')}")
|
|
elif isinstance(v, float):
|
|
second_column.append(f" - {k.replace('_', ' ')}: {round(v, 3)}")
|
|
else:
|
|
second_column.append(f" - {k.replace('_', ' ')}: {v}")
|
|
|
|
second_column.append("")
|
|
|
|
out = []
|
|
|
|
for i in range(max(len(first_column), len(second_column))):
|
|
if i < len(first_column):
|
|
first = first_column[i]
|
|
else:
|
|
first = ""
|
|
|
|
if i < len(second_column):
|
|
second = second_column[i]
|
|
else:
|
|
second = ""
|
|
|
|
out.append(f"{first:50} {second}")
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def apply(ctx, seed, filename, no_resize, with_fxaa, time, speed, preset_name, input_filename):
|
|
if not seed:
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
|
|
value.set_seed(seed)
|
|
reload_presets(PRESETS)
|
|
|
|
input_shape = util.shape_from_file(input_filename)
|
|
|
|
input_shape[2] = min(input_shape[2], 3)
|
|
|
|
tensor = tf.image.convert_image_dtype(util.load(input_filename, channels=input_shape[2]), dtype=tf.float32)
|
|
|
|
if preset_name == "random":
|
|
preset_name = list(EFFECT_PRESETS)[random.randint(0, len(EFFECT_PRESETS) - 1)]
|
|
|
|
print(f"{preset_name} (seed: {seed})")
|
|
|
|
preset = EFFECT_PRESETS[preset_name]
|
|
|
|
if no_resize:
|
|
shape = input_shape
|
|
|
|
else:
|
|
shape = [1024, 1024, input_shape[2]]
|
|
|
|
tensor = effects.square_crop_and_resize(tensor, input_shape, shape[0])
|
|
|
|
try:
|
|
preset.render(seed=seed, tensor=tensor, shape=shape, with_fxaa=with_fxaa, time=time, speed=speed, filename=filename)
|
|
|
|
except Exception as e:
|
|
util.logger.error(f"preset.render() failed: {e}\nSeed: {seed}\nArgs: {preset.__dict__}")
|
|
raise
|
|
|
|
|
|
def animate(ctx, width, height, seed, effect_preset, filename, save_frames, frame_count, watermark, preview_filename, with_alt_text, with_supersample, with_fxaa, preset_name):
|
|
if seed is None:
|
|
seed = random.randint(1, MAX_SEED_VALUE)
|
|
|
|
value.set_seed(seed)
|
|
reload_presets(PRESETS)
|
|
|
|
if preset_name == 'random':
|
|
preset_name = list(GENERATOR_PRESETS)[random.randint(0, len(GENERATOR_PRESETS) - 1)]
|
|
|
|
if effect_preset == 'random':
|
|
effect_preset = list(EFFECT_PRESETS)[random.randint(0, len(EFFECT_PRESETS) - 1)]
|
|
|
|
if effect_preset:
|
|
print(f"{preset_name} vs. {effect_preset} (seed: {seed})")
|
|
else:
|
|
print(f"{preset_name} (seed: {seed})")
|
|
|
|
preset = GENERATOR_PRESETS[preset_name]
|
|
|
|
caption = None
|
|
|
|
with tempfile.TemporaryDirectory() as tmp:
|
|
for i in range(frame_count):
|
|
frame_filename = f'{tmp}/{i:04d}.png'
|
|
|
|
common_params = ['--seed', str(seed),
|
|
'--time', f'{i/frame_count:0.4f}',
|
|
'--filename', frame_filename]
|
|
|
|
extra_params = []
|
|
if with_alt_text and i == 0:
|
|
extra_params = ['--with-alt-text']
|
|
|
|
if with_supersample:
|
|
extra_params += ['--with-supersample']
|
|
|
|
if with_fxaa:
|
|
extra_params += ['--with-fxaa']
|
|
|
|
output = subprocess.check_output(['noisemaker', 'generate', preset_name,
|
|
'--speed', str(_use_reasonable_speed(preset, frame_count)),
|
|
'--height', str(height),
|
|
'--width', str(width)] + common_params + extra_params,
|
|
universal_newlines=True).strip().split("\n")
|
|
|
|
if with_alt_text and i == 0:
|
|
if len(output) == 6: # Useless extra crap that Tensorflow on Apple Silicon spews to stdout
|
|
print(output[2])
|
|
else:
|
|
print(output[1])
|
|
|
|
if effect_preset:
|
|
extra_params = []
|
|
|
|
if with_fxaa:
|
|
extra_params += ['--with-fxaa']
|
|
|
|
util.check_call(['noisemaker', 'apply', effect_preset, frame_filename,
|
|
'--no-resize',
|
|
'--speed', str(_use_reasonable_speed(EFFECT_PRESETS[effect_preset], frame_count))]
|
|
+ common_params + extra_params)
|
|
|
|
if save_frames:
|
|
shutil.copy(frame_filename, save_frames)
|
|
|
|
if watermark:
|
|
util.watermark(watermark, frame_filename)
|
|
|
|
if preview_filename and i == 0:
|
|
shutil.copy(frame_filename, preview_filename)
|
|
|
|
if filename.endswith(".mp4"):
|
|
util.check_call(["ffmpeg",
|
|
"-framerate", "30",
|
|
"-i", f"{tmp}/%04d.png",
|
|
"-s", "1024x1024",
|
|
"-c:v", "libx264",
|
|
"-preset", "veryslow",
|
|
"-crf", "15",
|
|
"-pix_fmt", "yuv420p",
|
|
"-b:v", "8000k",
|
|
"-bufsize", "16000k",
|
|
filename])
|
|
|
|
else:
|
|
util.magick(f'{tmp}/*png', filename)
|
|
|
|
@main.command(help="Blend a directory of .png or .jpg images")
|
|
@cli.input_dir_option(required=True)
|
|
@cli.filename_option(default="collage.png")
|
|
@click.option("--control-filename", help="Control image filename (optional)")
|
|
@cli.time_option()
|
|
@click.option('--speed', help="Animation speed", type=float, default=0.25)
|
|
@cli.seed_option()
|
|
@click.pass_context
|
|
def mashup(ctx, input_dir, filename, control_filename, time, speed, seed):
|
|
filenames = []
|
|
|
|
for root, _, files in os.walk(input_dir):
|
|
for f in files:
|
|
if f.endswith(('.png', '.jpg')):
|
|
filenames.append(os.path.join(root, f))
|
|
|
|
collage_count = min(random.randint(4, 6), len(filenames))
|
|
collage_images = []
|
|
|
|
for i in range(collage_count + 1):
|
|
index = random.randint(0, len(filenames) - 1)
|
|
|
|
input_filename = os.path.join(input_dir, filenames[index])
|
|
|
|
collage_input = tf.image.convert_image_dtype(util.load(input_filename, channels=3), dtype=tf.float32)
|
|
|
|
collage_images.append(collage_input)
|
|
|
|
if control_filename:
|
|
control_shape = util.shape_from_file(control_filename)
|
|
control = tf.image.convert_image_dtype(util.load(control_filename, channels=control_shape[2]), dtype=tf.float32)
|
|
|
|
else:
|
|
control = collage_images.pop()
|
|
|
|
shape = tf.shape(control) # All images need to be the same size!
|
|
|
|
control = value.value_map(control, shape, keepdims=True)
|
|
|
|
value.set_seed(seed)
|
|
|
|
base = generators.basic(freq=random.randint(2, 5), shape=shape, lattice_drift=random.randint(0, 1), hue_range=random.random(),
|
|
time=time, speed=speed)
|
|
|
|
value_shape = value.value_shape(shape)
|
|
|
|
control = value.convolve(kernel=effects.ValueMask.conv2d_blur, tensor=control, shape=value_shape)
|
|
|
|
tensor = effects.blend_layers(control, shape, random.random() * .5, *collage_images)
|
|
|
|
tensor = value.blend(tensor, base, .125 + random.random() * .125)
|
|
|
|
tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125)
|
|
tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125, reference=control)
|
|
|
|
tensor = tf.image.adjust_brightness(tensor, .1)
|
|
tensor = tf.image.adjust_contrast(tensor, 1.5)
|
|
|
|
util.save(tensor, filename)
|
|
|
|
print('mashup')
|
|
|
|
|
|
def _use_reasonable_speed(preset, frame_count):
|
|
"""Return a reasonable speed parameter for the given animation length."""
|
|
|
|
return preset.settings.get("speed", 0.25) * (frame_count / 50.0)
|
|
|
|
|
|
def dream(width, height, filename):
|
|
name, prompt, description = dreamer.dream(width, height, filename=filename)
|
|
|
|
print(name)
|
|
print(prompt)
|
|
print(description)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
#testPillow()
|
|
#postprocessBrightness('/tmp/')
|
|
|
|
|