
Python for JAVADevelopers: Basics V 1.2 Referring python 3.7.1

1 Basic Syntax

1.1 End of Statements

Unlike the Java, to end a statement in Python, we don’t have to type
in a semicolon, you simply press Enter . But semicolons can be
used to delimit statements if you wish to put multiple statements
on the same line.

message1 = ’Hello World!’
message2 = "Python gives no missing semicolon error!"

Instead of System.out.print, we use print
print (message1) # print ’Hello World!’ on the console output
print ("Hello"); print ("Python!"); # usage of the semicolon

1.2 Code Blocks and Indentation

One of the most distinctive features of Python is its use of inden-
tation to mark blocks of code. Consider the following if-statement
from our non-zero number checking program:

JAVA

if (0 == value) {
System.out.print("Number is Zero");

} else {
System.out.print("Number is non-Zero.");

}

System.out.print("All done!");

Python

if 0 == value:
print(’Number is Zero’)

else:
print(’Number is non-Zero.’)

print(’All done!’)

To indicate a block of code in Python, you must indent each
line of the block by the same amount. The two blocks of code in
our example if-statement are both indented four spaces, which is
a typical amount of indentation for Python.

2 Variables

2.1 Declaration

Variables are created the first time a value is assigned to them.
There is no concept of the declaration of the data type in python.

number = 11
string = "This is a string"

You declare multiple variables by separating each variable name
with a comma.

a, b = True, False

2.2 Assigning Values

a = 300

The same value can be assigned to multiple variables at the same
time:

a = b = c = 1

And multiple variables can be assigned different values on a single
line:

a, b, c = 1, 2, "john"

This is the same as:

a = 1
b = 2
c = "john"

3 Data Types

Python sets the variable type based on the value that is assigned to
it. Unlike JAVA, Python will change the variable type if the variable
value is set to another value.

var = 123 # This will create a number integer assignment
var = ’john’ # the ‘var‘ variable is now a string type.

3.1 Numbers

Most of the time using the standard Python number type is fine.
Python will automatically convert a number from one type to an-
other whenever required. We don’t require to use the type casting
like JAVA.

Type Java Python Description

int int a = 11 a = 11 Signed Integer
long long a = 1712L a = 1712L (L) Long integers
float float a = 19.91 a = 19.91 (.) Floating point values

complex - - - a = 3.14J (J) integer [0 to 255]

© 2019 Akash Panchal - www.medium.com/@akashp1712

3.2 String

Create string variables by enclosing characters in quotes. Python
uses single quotes ′ double quotes ” and triple quotes ”””

to denote literal strings. Only the triple quoted strings ””” will
automatically continue across the end of line statement.

firstName = ’Jane’
lastName = "Doe"
message = """This is a string that will span across multiple

lines. Using newline characters and no spaces for the
next lines."""

Key Methods:

Java Python

charAt() find()
indexOf() index()
length() len()
replace() replace()
toString() str()
trim() rstrip(), lstrip()

Python String comparison can be performed using equality (==)
and comparison (<, >, !=, <=, >=) operators. There are no special
methods to compare two strings.

3.3 Boolean

Python provides the boolean type that can be either set to False or
True. In python, every object has a boolean value. The following
elements are false:

• None

• False

• 0

• Empty collections: “”, (), [],

All other objects are True. Note that, In JAVA null is not false
while in python None is.

3.4 List

The List is one of the most powerful variable type (data structure!)
in Python. A list can contain a series of values. Unlike JAVA, the
list need not be always homogeneous. A single list can contain
strings, integers, as well as objects. Lists are mutable.

List variables are declared by using brackets [] following the
variable name.

A = [] # This is a blank list variable.
B = [1, 23, 45, 67] # creates an initial list of 4 numbers.
C = [2, 4, ’john’] # can contain different variable types.
D = ["A", B, C] # can contains other list objects as well.

Key Methods:

Java ArrayList Python list

list = new ArrayList() list=[]
list.add(object) list.append(object)

list.get(i) list[i]
list.size() len(list)

list2= list.clone() list2=list[:]

3.5 Tuple

A tuple is another useful variable type similar to list and can contain
heterogeneous values. Unlike the list, a tuple is immutable And is
like a static array.

A tuple is fixed in size and that is why tuples are replacing
array completely as they are more efficient in all parameters.

Tuple can be used as an alternative of list(python/Java) OR
Array(Java) with respect to the use cases. i.e, If you have a
dataset which will be assigned only once and its value should not
change again, you need a tuple.

Tuple variables are declared by using parentheses () follow-
ing the variable name.

A = () # This is a blank tuple variable.
B = (1, 23, 45, 67) # creates a tuple of 4 numbers.
C = (2, 4, ’john’) # can contain different variable types.
D = ("A", B, C) # can contains other tuple objects as well.

3.6 Dictionary

Dictionaries in Python are lists of Key: Value pairs. This is a very
powerful datatype to hold a lot of related information that can be
associated through keys. Dictionary in Python can be the Alter-
native of the Map in JAVA. But again a Dictionary in python can
contain heterogeneous key as well as value.

room_num = {’john’: 121, ’tom’: 307}
room_num[’john’] = 432 # set the value associated with the

’john’ key to 432
print (room_num[’tom’]) # print the value of the ’tom’ key.
room_num[’isaac’] = 345 # Add a new key ’isaac’ with the

associated value
print (room_num.keys()) # print out a list of keys in the

dictionary
print (’isaac’ in room_num) # test to see if ’issac’ is in the

dictionary. This returns true.

hotel_name = {1: "Taj", "two": "Woodland", "next": 3.14} #
this is totally valid in python

Key Methods:

© 2019 Akash Panchal - www.medium.com/@akashp1712

Java HashMap Python Dictionary

Map myMap = new HashMap() my_dict = { }
clear() clear()
clone() copy()

containsKey(key) key in my_dict
get(key) get(key)
keySet() keys()

put(key, value) my_dict[key] = value
remove(key) pop(key)

size() len(my_dict)

4 Operators

4.0.1 Operator Precedence

Operator Precedence is same as that of JAVA, let’s revise it in
python. Arithmetic operators are evaluated first, comparison oper-
ators are evaluated next, and logical operators are evaluated last.

Arithmetic operators are evaluated in the following order of
precedence.

JAVA Python Description

NOT AVAILABLE ** Exponentiation
- - Unary negation
* * Multiplication
/ / Division
% % Modulus arithmetic
+ + Addition
- - Subtraction

Logical operators are evaluated in the following order of prece-
dence.

JAVA Python Description

! not Logical negation
& & Logical conjunction
| | Logical dis-junction
∧ ∧ Logical exclusion
&& and Conditional AND
|| or Conditional OR

Comparison operators all have equal precedence; that is, they
are evaluated in the left-to-right order in which they appear.

JAVA Python Description

< < Less than
> > Greater than
<= <= Less than or equal to
>= >= Greater than or equal to
== == Equality
!= != Inequality

equals is Object equivalence

Note: == in python is actually .equals() of Java.

5 Conditionals

5.1 if

var1 = 250
if 250 == var1:

print ("The value of the variable is 250")

5.2 if..else

var1 = 250
if 0 == var1:

MyLayerColor = ’vbRed’
MyObjectColor = ’vbBlue’

else :
MyLayerColor = ’vbGreen’
MyObjectColor = ’vbBlack’

print (MyLayerColor)

5.3 if..elif..elif..else

var1 = 0
if 0 <= var1:

print ("This is the first " + str(var1))
elif 1 == var1:

print ("This is the second " + str(var1))
elif 2 >= var1:

print ("This is the third " + str(var1))
else:

print ("Value out of range!")

5.4 Multiple conditions

skill1 = "java"
skill2 = "python"

if skill1 == "java" and skill2 == "python":
print ("Both the condition satisfy")

if skill1 == "java" or skill2 == "python":
print ("At least One condition satisfies")

6 Looping

6.1 For Loop

Python will automatically increments the counter (x) variable by 1
after coming to end of the execution block.

for x in range(0, 5):
print ("It’s a loop: " + str(x))

Increase or decrease the counter variable by the value you
specify.

© 2019 Akash Panchal - www.medium.com/@akashp1712

the counter variable j is incremented by 2 each time the
loop repeats

for j in range(0, 10, 2):
print ("We’re on loop " + str(j))

the counter variable j is decreased by 2 each time the loop
repeats

for j in range(10, 0, -2):
print ("We’re on loop " + str(j))

You can exit any for loop before the counter reaches its end
value by using the break statement.

6.2 While Loop

Simple example of while loop.

var1 = 3
while var1 < 37:

var1 = var1 * 2
print (var1)

print ("Exited while loop.")

Another example of while loop with break statement.

while True:
n = raw_input("Please enter ’hello’:")
if n.strip() == ’hello’:

break

7 Iterations

7.1 Iterating a List

friends = [’Huey’, ’Dewey’, ’Louie’]
for friend in friends:

print (’Hello ’, friend)
print (’Done!’)

7.2 Iterating a Tuple

tup = (’alpha’, ’beta’, ’omega’)
for val in tup:

print (val)

7.3 Iterating a Dictionary

codes = {’INDIA’: ’in’, ’USA’: ’us’, ’UK’: ’gb’}
for key in codes:

print (key, ’corresponds to’, codes[key])

Note: key is just a variable name.

The above will simply loop over the keys in the dictionary, rather
than the keys and values.

To loop over both key and value you can use the following:

codes = {’INDIA’: ’in’, ’USA’: ’us’, ’UK’: ’gb’}
for key, value in codes.iteritems():

print (key, ’corresponds to’, value)

Note: key, value are just the variable names.

8 The End

That’s all Folks.
This ebook is made using Overleaf.
The source can be found on�.
Thanks to ¯ Piyush Joshi for all the guidance for this project.

© 2019 Akash Panchal - www.medium.com/@akashp1712

https://overleaf.com
https://github.com/akashp1712/python_cheat_sheets
https://www.linkedin.com/in/piyush-joshi-b7525216/

	Basic Syntax
	End of Statements
	Code Blocks and Indentation

	Variables
	Declaration
	Assigning Values

	Data Types
	Numbers
	String
	Boolean
	List
	Tuple
	Dictionary

	Operators
	Operator Precedence

	Conditionals
	if
	if..else
	if..elif..elif..else
	Multiple conditions

	Looping
	For Loop
	While Loop

	Iterations
	Iterating a List
	Iterating a Tuple
	Iterating a Dictionary

	The End

