Update curve25519-donna

This commit is contained in:
Matt Corallo 2014-07-19 21:35:33 -04:00
parent 28d1f370cd
commit 87619fc8fe

View file

@ -43,8 +43,7 @@
* *
* This is, almost, a clean room reimplementation from the curve25519 paper. It * This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken * uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation. * from the sample implementation. */
*/
#include <string.h> #include <string.h>
#include <stdint.h> #include <stdint.h>
@ -63,25 +62,23 @@ typedef int64_t limb;
* significant first. The value of the field element is: * significant first. The value of the field element is:
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
* *
* i.e. the limbs are 26, 25, 26, 25, ... bits wide. * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
*/
/* Sum two numbers: output += in */ /* Sum two numbers: output += in */
static void fsum(limb *output, const limb *in) { static void fsum(limb *output, const limb *in) {
unsigned i; unsigned i;
for (i = 0; i < 10; i += 2) { for (i = 0; i < 10; i += 2) {
output[0+i] = (output[0+i] + in[0+i]); output[0+i] = output[0+i] + in[0+i];
output[1+i] = (output[1+i] + in[1+i]); output[1+i] = output[1+i] + in[1+i];
} }
} }
/* Find the difference of two numbers: output = in - output /* Find the difference of two numbers: output = in - output
* (note the order of the arguments!) * (note the order of the arguments!). */
*/
static void fdifference(limb *output, const limb *in) { static void fdifference(limb *output, const limb *in) {
unsigned i; unsigned i;
for (i = 0; i < 10; ++i) { for (i = 0; i < 10; ++i) {
output[i] = (in[i] - output[i]); output[i] = in[i] - output[i];
} }
} }
@ -97,7 +94,8 @@ static void fscalar_product(limb *output, const limb *in, const limb scalar) {
* *
* output must be distinct to both inputs. The inputs are reduced coefficient * output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not. * form, the output is not.
*/ *
* output[x] <= 14 * the largest product of the input limbs. */
static void fproduct(limb *output, const limb *in2, const limb *in) { static void fproduct(limb *output, const limb *in2, const limb *in) {
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
@ -201,9 +199,15 @@ static void fproduct(limb *output, const limb *in2, const limb *in) {
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
} }
/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */ /* Reduce a long form to a short form by taking the input mod 2^255 - 19.
*
* On entry: |output[i]| < 14*2^54
* On exit: |output[0..8]| < 280*2^54 */
static void freduce_degree(limb *output) { static void freduce_degree(limb *output) {
/* Each of these shifts and adds ends up multiplying the value by 19. */ /* Each of these shifts and adds ends up multiplying the value by 19.
*
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
output[8] += output[18] << 4; output[8] += output[18] << 4;
output[8] += output[18] << 1; output[8] += output[18] << 1;
output[8] += output[18]; output[8] += output[18];
@ -237,11 +241,13 @@ static void freduce_degree(limb *output) {
#error "This code only works on a two's complement system" #error "This code only works on a two's complement system"
#endif #endif
/* return v / 2^26, using only shifts and adds. */ /* return v / 2^26, using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb static inline limb
div_by_2_26(const limb v) div_by_2_26(const limb v)
{ {
/* High word of v; no shift needed*/ /* High word of v; no shift needed. */
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */ /* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31; const int32_t sign = ((int32_t) highword) >> 31;
@ -251,7 +257,9 @@ div_by_2_26(const limb v)
return (v + roundoff) >> 26; return (v + roundoff) >> 26;
} }
/* return v / (2^25), using only shifts and adds. */ /* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb static inline limb
div_by_2_25(const limb v) div_by_2_25(const limb v)
{ {
@ -265,6 +273,9 @@ div_by_2_25(const limb v)
return (v + roundoff) >> 25; return (v + roundoff) >> 25;
} }
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline s32 static inline s32
div_s32_by_2_25(const s32 v) div_s32_by_2_25(const s32 v)
{ {
@ -274,8 +285,7 @@ div_s32_by_2_25(const s32 v)
/* Reduce all coefficients of the short form input so that |x| < 2^26. /* Reduce all coefficients of the short form input so that |x| < 2^26.
* *
* On entry: |output[i]| < 2^62 * On entry: |output[i]| < 280*2^54 */
*/
static void freduce_coefficients(limb *output) { static void freduce_coefficients(limb *output) {
unsigned i; unsigned i;
@ -283,56 +293,65 @@ static void freduce_coefficients(limb *output) {
for (i = 0; i < 10; i += 2) { for (i = 0; i < 10; i += 2) {
limb over = div_by_2_26(output[i]); limb over = div_by_2_26(output[i]);
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
* most, 280*2^28 in the first iteration of this loop. This is added to the
* next limb and we can approximate the resulting bound of that limb by
* 281*2^54. */
output[i] -= over << 26; output[i] -= over << 26;
output[i+1] += over; output[i+1] += over;
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
* 281*2^29. When this is added to the next limb, the resulting bound can
* be approximated as 281*2^54.
*
* For subsequent iterations of the loop, 281*2^54 remains a conservative
* bound and no overflow occurs. */
over = div_by_2_25(output[i+1]); over = div_by_2_25(output[i+1]);
output[i+1] -= over << 25; output[i+1] -= over << 25;
output[i+2] += over; output[i+2] += over;
} }
/* Now |output[10]| < 2 ^ 38 and all other coefficients are reduced. */ /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
output[0] += output[10] << 4; output[0] += output[10] << 4;
output[0] += output[10] << 1; output[0] += output[10] << 1;
output[0] += output[10]; output[0] += output[10];
output[10] = 0; output[10] = 0;
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19 * 2^38 /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
* So |over| will be no more than 77825 */ * So |over| will be no more than 2^16. */
{ {
limb over = div_by_2_26(output[0]); limb over = div_by_2_26(output[0]);
output[0] -= over << 26; output[0] -= over << 26;
output[1] += over; output[1] += over;
} }
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 77825 /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
* So |over| will be no more than 1. */ * bound on |output[1]| is sufficient to meet our needs. */
{
/* output[1] fits in 32 bits, so we can use div_s32_by_2_25 here. */
s32 over32 = div_s32_by_2_25((s32) output[1]);
output[1] -= over32 << 25;
output[2] += over32;
}
/* Finally, output[0,1,3..9] are reduced, and output[2] is "nearly reduced":
* we have |output[2]| <= 2^26. This is good enough for all of our math,
* but it will require an extra freduce_coefficients before fcontract. */
} }
/* A helpful wrapper around fproduct: output = in * in2. /* A helpful wrapper around fproduct: output = in * in2.
* *
* output must be distinct to both inputs. The output is reduced degree and * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
* reduced coefficient. *
*/ * output must be distinct to both inputs. The output is reduced degree
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
static void static void
fmul(limb *output, const limb *in, const limb *in2) { fmul(limb *output, const limb *in, const limb *in2) {
limb t[19]; limb t[19];
fproduct(t, in, in2); fproduct(t, in, in2);
/* |t[i]| < 14*2^54 */
freduce_degree(t); freduce_degree(t);
freduce_coefficients(t); freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10); memcpy(output, t, sizeof(limb) * 10);
} }
/* Square a number: output = in**2
*
* output must be distinct from the input. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fsquare_inner(limb *output, const limb *in) { static void fsquare_inner(limb *output, const limb *in) {
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
@ -391,12 +410,23 @@ static void fsquare_inner(limb *output, const limb *in) {
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
} }
/* fsquare sets output = in^2.
*
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
* 2^27.
*
* On exit: The |output| argument is in reduced coefficients form (indeed, one
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
static void static void
fsquare(limb *output, const limb *in) { fsquare(limb *output, const limb *in) {
limb t[19]; limb t[19];
fsquare_inner(t, in); fsquare_inner(t, in);
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
* products. */
freduce_degree(t); freduce_degree(t);
freduce_coefficients(t); freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10); memcpy(output, t, sizeof(limb) * 10);
} }
@ -417,7 +447,7 @@ fexpand(limb *output, const u8 *input) {
F(6, 19, 1, 0x3ffffff); F(6, 19, 1, 0x3ffffff);
F(7, 22, 3, 0x1ffffff); F(7, 22, 3, 0x1ffffff);
F(8, 25, 4, 0x3ffffff); F(8, 25, 4, 0x3ffffff);
F(9, 28, 6, 0x3ffffff); F(9, 28, 6, 0x1ffffff);
#undef F #undef F
} }
@ -425,60 +455,143 @@ fexpand(limb *output, const u8 *input) {
#error "This code only works when >> does sign-extension on negative numbers" #error "This code only works when >> does sign-extension on negative numbers"
#endif #endif
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
static s32 s32_eq(s32 a, s32 b) {
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
* both non-negative. */
static s32 s32_gte(s32 a, s32 b) {
a -= b;
/* a >= 0 iff a >= b. */
return ~(a >> 31);
}
/* Take a fully reduced polynomial form number and contract it into a /* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array * little-endian, 32-byte array.
*/ *
* On entry: |input_limbs[i]| < 2^26 */
static void static void
fcontract(u8 *output, limb *input) { fcontract(u8 *output, limb *input_limbs) {
int i; int i;
int j; int j;
s32 input[10];
s32 mask;
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
for (i = 0; i < 10; i++) {
input[i] = input_limbs[i];
}
for (j = 0; j < 2; ++j) { for (j = 0; j < 2; ++j) {
for (i = 0; i < 9; ++i) { for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) { if ((i & 1) == 1) {
/* This calculation is a time-invariant way to make input[i] positive /* This calculation is a time-invariant way to make input[i]
by borrowing from the next-larger limb. * non-negative by borrowing from the next-larger limb. */
*/ const s32 mask = input[i] >> 31;
const s32 mask = (s32)(input[i]) >> 31; const s32 carry = -((input[i] & mask) >> 25);
const s32 carry = -(((s32)(input[i]) & mask) >> 25); input[i] = input[i] + (carry << 25);
input[i] = (s32)(input[i]) + (carry << 25); input[i+1] = input[i+1] - carry;
input[i+1] = (s32)(input[i+1]) - carry;
} else { } else {
const s32 mask = (s32)(input[i]) >> 31; const s32 mask = input[i] >> 31;
const s32 carry = -(((s32)(input[i]) & mask) >> 26); const s32 carry = -((input[i] & mask) >> 26);
input[i] = (s32)(input[i]) + (carry << 26); input[i] = input[i] + (carry << 26);
input[i+1] = (s32)(input[i+1]) - carry; input[i+1] = input[i+1] - carry;
} }
} }
/* There's no greater limb for input[9] to borrow from, but we can multiply
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
{ {
const s32 mask = (s32)(input[9]) >> 31; const s32 mask = input[9] >> 31;
const s32 carry = -(((s32)(input[9]) & mask) >> 25); const s32 carry = -((input[9] & mask) >> 25);
input[9] = (s32)(input[9]) + (carry << 25); input[9] = input[9] + (carry << 25);
input[0] = (s32)(input[0]) - (carry * 19); input[0] = input[0] - (carry * 19);
} }
/* After the first iteration, input[1..9] are non-negative and fit within
* 25 or 26 bits, depending on position. However, input[0] may be
* negative. */
} }
/* The first borrow-propagation pass above ended with every limb /* The first borrow-propagation pass above ended with every limb
except (possibly) input[0] non-negative. except (possibly) input[0] non-negative.
Since each input limb except input[0] is decreased by at most 1 If input[0] was negative after the first pass, then it was because of a
by a borrow-propagation pass, the second borrow-propagation pass carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
could only have wrapped around to decrease input[0] again if the one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
first pass left input[0] negative *and* input[1] through input[9]
were all zero. In that case, input[1] is now 2^25 - 1, and this In the second pass, each limb is decreased by at most one. Thus the second
last borrow-propagation step will leave input[1] non-negative. borrow-propagation pass could only have wrapped around to decrease
*/ input[0] again if the first pass left input[0] negative *and* input[1]
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
and this last borrow-propagation step will leave input[1] non-negative. */
{ {
const s32 mask = (s32)(input[0]) >> 31; const s32 mask = input[0] >> 31;
const s32 carry = -(((s32)(input[0]) & mask) >> 26); const s32 carry = -((input[0] & mask) >> 26);
input[0] = (s32)(input[0]) + (carry << 26); input[0] = input[0] + (carry << 26);
input[1] = (s32)(input[1]) - carry; input[1] = input[1] - carry;
} }
/* Both passes through the above loop, plus the last 0-to-1 step, are /* All input[i] are now non-negative. However, there might be values between
necessary: if input[9] is -1 and input[0] through input[8] are 0, * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
negative values will remain in the array until the end. for (j = 0; j < 2; j++) {
*/ for (i = 0; i < 9; i++) {
if ((i & 1) == 1) {
const s32 carry = input[i] >> 25;
input[i] &= 0x1ffffff;
input[i+1] += carry;
} else {
const s32 carry = input[i] >> 26;
input[i] &= 0x3ffffff;
input[i+1] += carry;
}
}
{
const s32 carry = input[9] >> 25;
input[9] &= 0x1ffffff;
input[0] += 19*carry;
}
}
/* If the first carry-chain pass, just above, ended up with a carry from
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
* < 2^26 + 2*19, because the carry was, at most, two.
*
* If the second pass carried from input[9] again then input[0] is < 2*19 and
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
/* It still remains the case that input might be between 2^255-19 and 2^255.
* In this case, input[1..9] must take their maximum value and input[0] must
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
mask = s32_gte(input[0], 0x3ffffed);
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
mask &= s32_eq(input[i], 0x1ffffff);
} else {
mask &= s32_eq(input[i], 0x3ffffff);
}
}
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
* this conditionally subtracts 2^255-19. */
input[0] -= mask & 0x3ffffed;
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
input[i] -= mask & 0x1ffffff;
} else {
input[i] -= mask & 0x3ffffff;
}
}
input[1] <<= 2; input[1] <<= 2;
input[2] <<= 3; input[2] <<= 3;
@ -516,7 +629,9 @@ fcontract(u8 *output, limb *input) {
* x z: short form, destroyed * x z: short form, destroyed
* xprime zprime: short form, destroyed * xprime zprime: short form, destroyed
* qmqp: short form, preserved * qmqp: short form, preserved
*/ *
* On entry and exit, the absolute value of the limbs of all inputs and outputs
* are < 2^26. */
static void fmonty(limb *x2, limb *z2, /* output 2Q */ static void fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */ limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */ limb *x, limb *z, /* input Q */
@ -527,43 +642,69 @@ static void fmonty(limb *x2, limb *z2, /* output 2Q */
memcpy(origx, x, 10 * sizeof(limb)); memcpy(origx, x, 10 * sizeof(limb));
fsum(x, z); fsum(x, z);
fdifference(z, origx); // does x - z /* |x[i]| < 2^27 */
fdifference(z, origx); /* does x - z */
/* |z[i]| < 2^27 */
memcpy(origxprime, xprime, sizeof(limb) * 10); memcpy(origxprime, xprime, sizeof(limb) * 10);
fsum(xprime, zprime); fsum(xprime, zprime);
/* |xprime[i]| < 2^27 */
fdifference(zprime, origxprime); fdifference(zprime, origxprime);
/* |zprime[i]| < 2^27 */
fproduct(xxprime, xprime, z); fproduct(xxprime, xprime, z);
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
* (Approximating that to 2^58 doesn't work out.) */
fproduct(zzprime, x, zprime); fproduct(zzprime, x, zprime);
/* |zzprime[i]| < 14*2^54 */
freduce_degree(xxprime); freduce_degree(xxprime);
freduce_coefficients(xxprime); freduce_coefficients(xxprime);
/* |xxprime[i]| < 2^26 */
freduce_degree(zzprime); freduce_degree(zzprime);
freduce_coefficients(zzprime); freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(origxprime, xxprime, sizeof(limb) * 10); memcpy(origxprime, xxprime, sizeof(limb) * 10);
fsum(xxprime, zzprime); fsum(xxprime, zzprime);
/* |xxprime[i]| < 2^27 */
fdifference(zzprime, origxprime); fdifference(zzprime, origxprime);
/* |zzprime[i]| < 2^27 */
fsquare(xxxprime, xxprime); fsquare(xxxprime, xxprime);
/* |xxxprime[i]| < 2^26 */
fsquare(zzzprime, zzprime); fsquare(zzzprime, zzprime);
/* |zzzprime[i]| < 2^26 */
fproduct(zzprime, zzzprime, qmqp); fproduct(zzprime, zzzprime, qmqp);
/* |zzprime[i]| < 14*2^52 */
freduce_degree(zzprime); freduce_degree(zzprime);
freduce_coefficients(zzprime); freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(x3, xxxprime, sizeof(limb) * 10); memcpy(x3, xxxprime, sizeof(limb) * 10);
memcpy(z3, zzprime, sizeof(limb) * 10); memcpy(z3, zzprime, sizeof(limb) * 10);
fsquare(xx, x); fsquare(xx, x);
/* |xx[i]| < 2^26 */
fsquare(zz, z); fsquare(zz, z);
/* |zz[i]| < 2^26 */
fproduct(x2, xx, zz); fproduct(x2, xx, zz);
/* |x2[i]| < 14*2^52 */
freduce_degree(x2); freduce_degree(x2);
freduce_coefficients(x2); freduce_coefficients(x2);
/* |x2[i]| < 2^26 */
fdifference(zz, xx); // does zz = xx - zz fdifference(zz, xx); // does zz = xx - zz
/* |zz[i]| < 2^27 */
memset(zzz + 10, 0, sizeof(limb) * 9); memset(zzz + 10, 0, sizeof(limb) * 9);
fscalar_product(zzz, zz, 121665); fscalar_product(zzz, zz, 121665);
/* |zzz[i]| < 2^(27+17) */
/* No need to call freduce_degree here: /* No need to call freduce_degree here:
fscalar_product doesn't increase the degree of its input. */ fscalar_product doesn't increase the degree of its input. */
freduce_coefficients(zzz); freduce_coefficients(zzz);
/* |zzz[i]| < 2^26 */
fsum(zzz, xx); fsum(zzz, xx);
/* |zzz[i]| < 2^27 */
fproduct(z2, zz, zzz); fproduct(z2, zz, zzz);
/* |z2[i]| < 14*2^(26+27) */
freduce_degree(z2); freduce_degree(z2);
freduce_coefficients(z2); freduce_coefficients(z2);
/* |z2|i| < 2^26 */
} }
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
@ -574,8 +715,7 @@ static void fmonty(limb *x2, limb *z2, /* output 2Q */
* wrong results. Also, the two limb arrays must be in reduced-coefficient, * wrong results. Also, the two limb arrays must be in reduced-coefficient,
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
* and all all values in a[0..9],b[0..9] must have magnitude less than * and all all values in a[0..9],b[0..9] must have magnitude less than
* INT32_MAX. * INT32_MAX. */
*/
static void static void
swap_conditional(limb a[19], limb b[19], limb iswap) { swap_conditional(limb a[19], limb b[19], limb iswap) {
unsigned i; unsigned i;
@ -592,8 +732,7 @@ swap_conditional(limb a[19], limb b[19], limb iswap) {
* *
* resultx/resultz: the x coordinate of the resulting curve point (short form) * resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number * n: a little endian, 32-byte number
* q: a point of the curve (short form) * q: a point of the curve (short form) */
*/
static void static void
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
@ -711,8 +850,6 @@ crecip(limb *out, const limb *z) {
/* 2^255 - 21 */ fmul(out,t1,z11); /* 2^255 - 21 */ fmul(out,t1,z11);
} }
int curve25519_donna(u8 *, const u8 *, const u8 *);
int int
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
limb bp[10], x[10], z[11], zmone[10]; limb bp[10], x[10], z[11], zmone[10];
@ -720,15 +857,14 @@ curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
int i; int i;
for (i = 0; i < 32; ++i) e[i] = secret[i]; for (i = 0; i < 32; ++i) e[i] = secret[i];
/*e[0] &= 248; // e[0] &= 248;
e[31] &= 127; // e[31] &= 127;
e[31] |= 64;*/ // e[31] |= 64;
fexpand(bp, basepoint); fexpand(bp, basepoint);
cmult(x, z, e, bp); cmult(x, z, e, bp);
crecip(zmone, z); crecip(zmone, z);
fmul(z, x, zmone); fmul(z, x, zmone);
freduce_coefficients(z);
fcontract(mypublic, z); fcontract(mypublic, z);
return 0; return 0;
} }