diff --git a/Gruntfile.js b/Gruntfile.js
index ccde9811..8e7f9b68 100644
--- a/Gruntfile.js
+++ b/Gruntfile.js
@@ -15,19 +15,6 @@ module.exports = function(grunt) {
src: components,
dest: 'js/components.js',
},
- cryptojs: {
- src: [
- "components/cryptojs/src/core.js",
- "components/cryptojs/src/sha256.js",
- "components/cryptojs/src/hmac.js",
- "components/cryptojs/src/enc-base64.js",
- "components/cryptojs/src/md5.js",
- "components/cryptojs/src/evpkdf.js",
- "components/cryptojs/src/cipher-core.js",
- "components/cryptojs/src/aes.js"
- ],
- dest: 'js-deps/CryptoJS.js'
- },
test: {
src: [
'components/mocha/mocha.js',
@@ -46,6 +33,24 @@ module.exports = function(grunt) {
banner: ';(function(){\n',
footer: '\n})();'
}
+ },
+ webcrypto: {
+ src: [
+ 'components/cryptojs/src/core.js',
+ 'components/cryptojs/src/sha256.js',
+ 'components/cryptojs/src/hmac.js',
+ 'components/cryptojs/src/enc-base64.js',
+ 'components/cryptojs/src/md5.js',
+ 'components/cryptojs/src/evpkdf.js',
+ 'components/cryptojs/src/cipher-core.js',
+ 'components/cryptojs/src/aes.js',
+ 'build/webcrypto.js'
+ ],
+ dest: 'js/webcrypto.js',
+ options: {
+ banner: ';(function(){\n',
+ footer: '\n})();'
+ }
}
},
sass: {
diff --git a/background.html b/background.html
index 0c2961fc..5480a088 100644
--- a/background.html
+++ b/background.html
@@ -16,7 +16,6 @@
-
diff --git a/build/webcrypto.js b/build/webcrypto.js
new file mode 100644
index 00000000..d25335e0
--- /dev/null
+++ b/build/webcrypto.js
@@ -0,0 +1,92 @@
+/*
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program. If not, see .
+ */
+
+;(function() {
+ 'use strict';
+ // Test for webcrypto support, polyfill if needed.
+ if (window.crypto.subtle === undefined || window.crypto.subtle === null) {
+ window.crypto.subtle = (function () {
+ var StaticArrayBufferProto = new ArrayBuffer().__proto__;
+ function assertIsArrayBuffer(thing) {
+ if (thing !== Object(thing) || thing.__proto__ != StaticArrayBufferProto)
+ throw new Error("Needed a ArrayBuffer");
+ }
+
+ // Synchronous implementation functions for polyfilling webcrypto
+ // All inputs/outputs are arraybuffers!
+ function HmacSHA256(key, input) {
+ assertIsArrayBuffer(key);
+ assertIsArrayBuffer(input);
+ return CryptoJS.HmacSHA256(
+ CryptoJS.enc.Latin1.parse(getString(input)),
+ CryptoJS.enc.Latin1.parse(getString(key))
+ ).toString(CryptoJS.enc.Latin1);
+ };
+
+ function encryptAESCBC(plaintext, key, iv) {
+ assertIsArrayBuffer(plaintext);
+ assertIsArrayBuffer(key);
+ assertIsArrayBuffer(iv);
+ return CryptoJS.AES.encrypt(
+ CryptoJS.enc.Latin1.parse(getString(plaintext)),
+ CryptoJS.enc.Latin1.parse(getString(key)),
+ { iv: CryptoJS.enc.Latin1.parse(getString(iv)) }
+ ).ciphertext.toString(CryptoJS.enc.Latin1);
+ };
+
+ function decryptAESCBC(ciphertext, key, iv) {
+ assertIsArrayBuffer(ciphertext);
+ assertIsArrayBuffer(key);
+ assertIsArrayBuffer(iv);
+ return CryptoJS.AES.decrypt(
+ btoa(getString(ciphertext)),
+ CryptoJS.enc.Latin1.parse(getString(key)),
+ { iv: CryptoJS.enc.Latin1.parse(getString(iv)) }
+ ).toString(CryptoJS.enc.Latin1);
+ };
+
+ // utility function for connecting front and back ends via promises
+ // Takes an implementation function and 0 or more arguments
+ function promise(implementation) {
+ var args = Array.prototype.slice.call(arguments);
+ args.shift();
+ return new Promise(function(resolve) {
+ resolve(toArrayBuffer(implementation.apply(this, args)));
+ });
+ };
+
+ return {
+ encrypt: function(algorithm, key, data) {
+ if (algorithm.name === "AES-CBC")
+ return promise(encryptAESCBC, data, key, algorithm.iv.buffer || algorithm.iv);
+ },
+
+ decrypt: function(algorithm, key, data) {
+ if (algorithm.name === "AES-CBC")
+ return promise(decryptAESCBC, data, key, algorithm.iv.buffer || algorithm.iv);
+ },
+
+ sign: function(algorithm, key, data) {
+ if (algorithm.name === "HMAC" && algorithm.hash === "SHA-256")
+ return promise(HmacSHA256, key, data);
+ },
+
+ importKey: function(format, key, algorithm, extractable, usages) {
+ return new Promise(function(resolve,reject){ resolve(key); });
+ }
+ };
+ })();
+ } // if !window.crypto.subtle
+})();
diff --git a/index.html b/index.html
index 1f2ee3a7..5b6ac612 100644
--- a/index.html
+++ b/index.html
@@ -125,7 +125,6 @@
-
diff --git a/js-deps/CryptoJS.js b/js-deps/CryptoJS.js
deleted file mode 100644
index 41a701eb..00000000
--- a/js-deps/CryptoJS.js
+++ /dev/null
@@ -1,2544 +0,0 @@
-/**
- * CryptoJS core components.
- */
-var CryptoJS = CryptoJS || (function (Math, undefined) {
- /**
- * CryptoJS namespace.
- */
- var C = {};
-
- /**
- * Library namespace.
- */
- var C_lib = C.lib = {};
-
- /**
- * Base object for prototypal inheritance.
- */
- var Base = C_lib.Base = (function () {
- function F() {}
-
- return {
- /**
- * Creates a new object that inherits from this object.
- *
- * @param {Object} overrides Properties to copy into the new object.
- *
- * @return {Object} The new object.
- *
- * @static
- *
- * @example
- *
- * var MyType = CryptoJS.lib.Base.extend({
- * field: 'value',
- *
- * method: function () {
- * }
- * });
- */
- extend: function (overrides) {
- // Spawn
- F.prototype = this;
- var subtype = new F();
-
- // Augment
- if (overrides) {
- subtype.mixIn(overrides);
- }
-
- // Create default initializer
- if (!subtype.hasOwnProperty('init')) {
- subtype.init = function () {
- subtype.$super.init.apply(this, arguments);
- };
- }
-
- // Initializer's prototype is the subtype object
- subtype.init.prototype = subtype;
-
- // Reference supertype
- subtype.$super = this;
-
- return subtype;
- },
-
- /**
- * Extends this object and runs the init method.
- * Arguments to create() will be passed to init().
- *
- * @return {Object} The new object.
- *
- * @static
- *
- * @example
- *
- * var instance = MyType.create();
- */
- create: function () {
- var instance = this.extend();
- instance.init.apply(instance, arguments);
-
- return instance;
- },
-
- /**
- * Initializes a newly created object.
- * Override this method to add some logic when your objects are created.
- *
- * @example
- *
- * var MyType = CryptoJS.lib.Base.extend({
- * init: function () {
- * // ...
- * }
- * });
- */
- init: function () {
- },
-
- /**
- * Copies properties into this object.
- *
- * @param {Object} properties The properties to mix in.
- *
- * @example
- *
- * MyType.mixIn({
- * field: 'value'
- * });
- */
- mixIn: function (properties) {
- for (var propertyName in properties) {
- if (properties.hasOwnProperty(propertyName)) {
- this[propertyName] = properties[propertyName];
- }
- }
-
- // IE won't copy toString using the loop above
- if (properties.hasOwnProperty('toString')) {
- this.toString = properties.toString;
- }
- },
-
- /**
- * Creates a copy of this object.
- *
- * @return {Object} The clone.
- *
- * @example
- *
- * var clone = instance.clone();
- */
- clone: function () {
- return this.init.prototype.extend(this);
- }
- };
- }());
-
- /**
- * An array of 32-bit words.
- *
- * @property {Array} words The array of 32-bit words.
- * @property {number} sigBytes The number of significant bytes in this word array.
- */
- var WordArray = C_lib.WordArray = Base.extend({
- /**
- * Initializes a newly created word array.
- *
- * @param {Array} words (Optional) An array of 32-bit words.
- * @param {number} sigBytes (Optional) The number of significant bytes in the words.
- *
- * @example
- *
- * var wordArray = CryptoJS.lib.WordArray.create();
- * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
- * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
- */
- init: function (words, sigBytes) {
- words = this.words = words || [];
-
- if (sigBytes != undefined) {
- this.sigBytes = sigBytes;
- } else {
- this.sigBytes = words.length * 4;
- }
- },
-
- /**
- * Converts this word array to a string.
- *
- * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
- *
- * @return {string} The stringified word array.
- *
- * @example
- *
- * var string = wordArray + '';
- * var string = wordArray.toString();
- * var string = wordArray.toString(CryptoJS.enc.Utf8);
- */
- toString: function (encoder) {
- return (encoder || Hex).stringify(this);
- },
-
- /**
- * Concatenates a word array to this word array.
- *
- * @param {WordArray} wordArray The word array to append.
- *
- * @return {WordArray} This word array.
- *
- * @example
- *
- * wordArray1.concat(wordArray2);
- */
- concat: function (wordArray) {
- // Shortcuts
- var thisWords = this.words;
- var thatWords = wordArray.words;
- var thisSigBytes = this.sigBytes;
- var thatSigBytes = wordArray.sigBytes;
-
- // Clamp excess bits
- this.clamp();
-
- // Concat
- if (thisSigBytes % 4) {
- // Copy one byte at a time
- for (var i = 0; i < thatSigBytes; i++) {
- var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
- thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
- }
- } else if (thatWords.length > 0xffff) {
- // Copy one word at a time
- for (var i = 0; i < thatSigBytes; i += 4) {
- thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
- }
- } else {
- // Copy all words at once
- thisWords.push.apply(thisWords, thatWords);
- }
- this.sigBytes += thatSigBytes;
-
- // Chainable
- return this;
- },
-
- /**
- * Removes insignificant bits.
- *
- * @example
- *
- * wordArray.clamp();
- */
- clamp: function () {
- // Shortcuts
- var words = this.words;
- var sigBytes = this.sigBytes;
-
- // Clamp
- words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
- words.length = Math.ceil(sigBytes / 4);
- },
-
- /**
- * Creates a copy of this word array.
- *
- * @return {WordArray} The clone.
- *
- * @example
- *
- * var clone = wordArray.clone();
- */
- clone: function () {
- var clone = Base.clone.call(this);
- clone.words = this.words.slice(0);
-
- return clone;
- },
-
- /**
- * Creates a word array filled with random bytes.
- *
- * @param {number} nBytes The number of random bytes to generate.
- *
- * @return {WordArray} The random word array.
- *
- * @static
- *
- * @example
- *
- * var wordArray = CryptoJS.lib.WordArray.random(16);
- */
- random: function (nBytes) {
- var words = [];
- for (var i = 0; i < nBytes; i += 4) {
- words.push((Math.random() * 0x100000000) | 0);
- }
-
- return new WordArray.init(words, nBytes);
- }
- });
-
- /**
- * Encoder namespace.
- */
- var C_enc = C.enc = {};
-
- /**
- * Hex encoding strategy.
- */
- var Hex = C_enc.Hex = {
- /**
- * Converts a word array to a hex string.
- *
- * @param {WordArray} wordArray The word array.
- *
- * @return {string} The hex string.
- *
- * @static
- *
- * @example
- *
- * var hexString = CryptoJS.enc.Hex.stringify(wordArray);
- */
- stringify: function (wordArray) {
- // Shortcuts
- var words = wordArray.words;
- var sigBytes = wordArray.sigBytes;
-
- // Convert
- var hexChars = [];
- for (var i = 0; i < sigBytes; i++) {
- var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
- hexChars.push((bite >>> 4).toString(16));
- hexChars.push((bite & 0x0f).toString(16));
- }
-
- return hexChars.join('');
- },
-
- /**
- * Converts a hex string to a word array.
- *
- * @param {string} hexStr The hex string.
- *
- * @return {WordArray} The word array.
- *
- * @static
- *
- * @example
- *
- * var wordArray = CryptoJS.enc.Hex.parse(hexString);
- */
- parse: function (hexStr) {
- // Shortcut
- var hexStrLength = hexStr.length;
-
- // Convert
- var words = [];
- for (var i = 0; i < hexStrLength; i += 2) {
- words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
- }
-
- return new WordArray.init(words, hexStrLength / 2);
- }
- };
-
- /**
- * Latin1 encoding strategy.
- */
- var Latin1 = C_enc.Latin1 = {
- /**
- * Converts a word array to a Latin1 string.
- *
- * @param {WordArray} wordArray The word array.
- *
- * @return {string} The Latin1 string.
- *
- * @static
- *
- * @example
- *
- * var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
- */
- stringify: function (wordArray) {
- // Shortcuts
- var words = wordArray.words;
- var sigBytes = wordArray.sigBytes;
-
- // Convert
- var latin1Chars = [];
- for (var i = 0; i < sigBytes; i++) {
- var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
- latin1Chars.push(String.fromCharCode(bite));
- }
-
- return latin1Chars.join('');
- },
-
- /**
- * Converts a Latin1 string to a word array.
- *
- * @param {string} latin1Str The Latin1 string.
- *
- * @return {WordArray} The word array.
- *
- * @static
- *
- * @example
- *
- * var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
- */
- parse: function (latin1Str) {
- // Shortcut
- var latin1StrLength = latin1Str.length;
-
- // Convert
- var words = [];
- for (var i = 0; i < latin1StrLength; i++) {
- words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
- }
-
- return new WordArray.init(words, latin1StrLength);
- }
- };
-
- /**
- * UTF-8 encoding strategy.
- */
- var Utf8 = C_enc.Utf8 = {
- /**
- * Converts a word array to a UTF-8 string.
- *
- * @param {WordArray} wordArray The word array.
- *
- * @return {string} The UTF-8 string.
- *
- * @static
- *
- * @example
- *
- * var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
- */
- stringify: function (wordArray) {
- try {
- return decodeURIComponent(escape(Latin1.stringify(wordArray)));
- } catch (e) {
- throw new Error('Malformed UTF-8 data');
- }
- },
-
- /**
- * Converts a UTF-8 string to a word array.
- *
- * @param {string} utf8Str The UTF-8 string.
- *
- * @return {WordArray} The word array.
- *
- * @static
- *
- * @example
- *
- * var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
- */
- parse: function (utf8Str) {
- return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
- }
- };
-
- /**
- * Abstract buffered block algorithm template.
- *
- * The property blockSize must be implemented in a concrete subtype.
- *
- * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
- */
- var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
- /**
- * Resets this block algorithm's data buffer to its initial state.
- *
- * @example
- *
- * bufferedBlockAlgorithm.reset();
- */
- reset: function () {
- // Initial values
- this._data = new WordArray.init();
- this._nDataBytes = 0;
- },
-
- /**
- * Adds new data to this block algorithm's buffer.
- *
- * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
- *
- * @example
- *
- * bufferedBlockAlgorithm._append('data');
- * bufferedBlockAlgorithm._append(wordArray);
- */
- _append: function (data) {
- // Convert string to WordArray, else assume WordArray already
- if (typeof data == 'string') {
- data = Utf8.parse(data);
- }
-
- // Append
- this._data.concat(data);
- this._nDataBytes += data.sigBytes;
- },
-
- /**
- * Processes available data blocks.
- *
- * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
- *
- * @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
- *
- * @return {WordArray} The processed data.
- *
- * @example
- *
- * var processedData = bufferedBlockAlgorithm._process();
- * var processedData = bufferedBlockAlgorithm._process(!!'flush');
- */
- _process: function (doFlush) {
- // Shortcuts
- var data = this._data;
- var dataWords = data.words;
- var dataSigBytes = data.sigBytes;
- var blockSize = this.blockSize;
- var blockSizeBytes = blockSize * 4;
-
- // Count blocks ready
- var nBlocksReady = dataSigBytes / blockSizeBytes;
- if (doFlush) {
- // Round up to include partial blocks
- nBlocksReady = Math.ceil(nBlocksReady);
- } else {
- // Round down to include only full blocks,
- // less the number of blocks that must remain in the buffer
- nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
- }
-
- // Count words ready
- var nWordsReady = nBlocksReady * blockSize;
-
- // Count bytes ready
- var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
-
- // Process blocks
- if (nWordsReady) {
- for (var offset = 0; offset < nWordsReady; offset += blockSize) {
- // Perform concrete-algorithm logic
- this._doProcessBlock(dataWords, offset);
- }
-
- // Remove processed words
- var processedWords = dataWords.splice(0, nWordsReady);
- data.sigBytes -= nBytesReady;
- }
-
- // Return processed words
- return new WordArray.init(processedWords, nBytesReady);
- },
-
- /**
- * Creates a copy of this object.
- *
- * @return {Object} The clone.
- *
- * @example
- *
- * var clone = bufferedBlockAlgorithm.clone();
- */
- clone: function () {
- var clone = Base.clone.call(this);
- clone._data = this._data.clone();
-
- return clone;
- },
-
- _minBufferSize: 0
- });
-
- /**
- * Abstract hasher template.
- *
- * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
- */
- var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
- /**
- * Configuration options.
- */
- cfg: Base.extend(),
-
- /**
- * Initializes a newly created hasher.
- *
- * @param {Object} cfg (Optional) The configuration options to use for this hash computation.
- *
- * @example
- *
- * var hasher = CryptoJS.algo.SHA256.create();
- */
- init: function (cfg) {
- // Apply config defaults
- this.cfg = this.cfg.extend(cfg);
-
- // Set initial values
- this.reset();
- },
-
- /**
- * Resets this hasher to its initial state.
- *
- * @example
- *
- * hasher.reset();
- */
- reset: function () {
- // Reset data buffer
- BufferedBlockAlgorithm.reset.call(this);
-
- // Perform concrete-hasher logic
- this._doReset();
- },
-
- /**
- * Updates this hasher with a message.
- *
- * @param {WordArray|string} messageUpdate The message to append.
- *
- * @return {Hasher} This hasher.
- *
- * @example
- *
- * hasher.update('message');
- * hasher.update(wordArray);
- */
- update: function (messageUpdate) {
- // Append
- this._append(messageUpdate);
-
- // Update the hash
- this._process();
-
- // Chainable
- return this;
- },
-
- /**
- * Finalizes the hash computation.
- * Note that the finalize operation is effectively a destructive, read-once operation.
- *
- * @param {WordArray|string} messageUpdate (Optional) A final message update.
- *
- * @return {WordArray} The hash.
- *
- * @example
- *
- * var hash = hasher.finalize();
- * var hash = hasher.finalize('message');
- * var hash = hasher.finalize(wordArray);
- */
- finalize: function (messageUpdate) {
- // Final message update
- if (messageUpdate) {
- this._append(messageUpdate);
- }
-
- // Perform concrete-hasher logic
- var hash = this._doFinalize();
-
- return hash;
- },
-
- blockSize: 512/32,
-
- /**
- * Creates a shortcut function to a hasher's object interface.
- *
- * @param {Hasher} hasher The hasher to create a helper for.
- *
- * @return {Function} The shortcut function.
- *
- * @static
- *
- * @example
- *
- * var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
- */
- _createHelper: function (hasher) {
- return function (message, cfg) {
- return new hasher.init(cfg).finalize(message);
- };
- },
-
- /**
- * Creates a shortcut function to the HMAC's object interface.
- *
- * @param {Hasher} hasher The hasher to use in this HMAC helper.
- *
- * @return {Function} The shortcut function.
- *
- * @static
- *
- * @example
- *
- * var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
- */
- _createHmacHelper: function (hasher) {
- return function (message, key) {
- return new C_algo.HMAC.init(hasher, key).finalize(message);
- };
- }
- });
-
- /**
- * Algorithm namespace.
- */
- var C_algo = C.algo = {};
-
- return C;
-}(Math));
-
-(function (Math) {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var WordArray = C_lib.WordArray;
- var Hasher = C_lib.Hasher;
- var C_algo = C.algo;
-
- // Initialization and round constants tables
- var H = [];
- var K = [];
-
- // Compute constants
- (function () {
- function isPrime(n) {
- var sqrtN = Math.sqrt(n);
- for (var factor = 2; factor <= sqrtN; factor++) {
- if (!(n % factor)) {
- return false;
- }
- }
-
- return true;
- }
-
- function getFractionalBits(n) {
- return ((n - (n | 0)) * 0x100000000) | 0;
- }
-
- var n = 2;
- var nPrime = 0;
- while (nPrime < 64) {
- if (isPrime(n)) {
- if (nPrime < 8) {
- H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
- }
- K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));
-
- nPrime++;
- }
-
- n++;
- }
- }());
-
- // Reusable object
- var W = [];
-
- /**
- * SHA-256 hash algorithm.
- */
- var SHA256 = C_algo.SHA256 = Hasher.extend({
- _doReset: function () {
- this._hash = new WordArray.init(H.slice(0));
- },
-
- _doProcessBlock: function (M, offset) {
- // Shortcut
- var H = this._hash.words;
-
- // Working variables
- var a = H[0];
- var b = H[1];
- var c = H[2];
- var d = H[3];
- var e = H[4];
- var f = H[5];
- var g = H[6];
- var h = H[7];
-
- // Computation
- for (var i = 0; i < 64; i++) {
- if (i < 16) {
- W[i] = M[offset + i] | 0;
- } else {
- var gamma0x = W[i - 15];
- var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^
- ((gamma0x << 14) | (gamma0x >>> 18)) ^
- (gamma0x >>> 3);
-
- var gamma1x = W[i - 2];
- var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^
- ((gamma1x << 13) | (gamma1x >>> 19)) ^
- (gamma1x >>> 10);
-
- W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
- }
-
- var ch = (e & f) ^ (~e & g);
- var maj = (a & b) ^ (a & c) ^ (b & c);
-
- var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
- var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25));
-
- var t1 = h + sigma1 + ch + K[i] + W[i];
- var t2 = sigma0 + maj;
-
- h = g;
- g = f;
- f = e;
- e = (d + t1) | 0;
- d = c;
- c = b;
- b = a;
- a = (t1 + t2) | 0;
- }
-
- // Intermediate hash value
- H[0] = (H[0] + a) | 0;
- H[1] = (H[1] + b) | 0;
- H[2] = (H[2] + c) | 0;
- H[3] = (H[3] + d) | 0;
- H[4] = (H[4] + e) | 0;
- H[5] = (H[5] + f) | 0;
- H[6] = (H[6] + g) | 0;
- H[7] = (H[7] + h) | 0;
- },
-
- _doFinalize: function () {
- // Shortcuts
- var data = this._data;
- var dataWords = data.words;
-
- var nBitsTotal = this._nDataBytes * 8;
- var nBitsLeft = data.sigBytes * 8;
-
- // Add padding
- dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
- dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
- dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
- data.sigBytes = dataWords.length * 4;
-
- // Hash final blocks
- this._process();
-
- // Return final computed hash
- return this._hash;
- },
-
- clone: function () {
- var clone = Hasher.clone.call(this);
- clone._hash = this._hash.clone();
-
- return clone;
- }
- });
-
- /**
- * Shortcut function to the hasher's object interface.
- *
- * @param {WordArray|string} message The message to hash.
- *
- * @return {WordArray} The hash.
- *
- * @static
- *
- * @example
- *
- * var hash = CryptoJS.SHA256('message');
- * var hash = CryptoJS.SHA256(wordArray);
- */
- C.SHA256 = Hasher._createHelper(SHA256);
-
- /**
- * Shortcut function to the HMAC's object interface.
- *
- * @param {WordArray|string} message The message to hash.
- * @param {WordArray|string} key The secret key.
- *
- * @return {WordArray} The HMAC.
- *
- * @static
- *
- * @example
- *
- * var hmac = CryptoJS.HmacSHA256(message, key);
- */
- C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
-}(Math));
-
-(function () {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var Base = C_lib.Base;
- var C_enc = C.enc;
- var Utf8 = C_enc.Utf8;
- var C_algo = C.algo;
-
- /**
- * HMAC algorithm.
- */
- var HMAC = C_algo.HMAC = Base.extend({
- /**
- * Initializes a newly created HMAC.
- *
- * @param {Hasher} hasher The hash algorithm to use.
- * @param {WordArray|string} key The secret key.
- *
- * @example
- *
- * var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
- */
- init: function (hasher, key) {
- // Init hasher
- hasher = this._hasher = new hasher.init();
-
- // Convert string to WordArray, else assume WordArray already
- if (typeof key == 'string') {
- key = Utf8.parse(key);
- }
-
- // Shortcuts
- var hasherBlockSize = hasher.blockSize;
- var hasherBlockSizeBytes = hasherBlockSize * 4;
-
- // Allow arbitrary length keys
- if (key.sigBytes > hasherBlockSizeBytes) {
- key = hasher.finalize(key);
- }
-
- // Clamp excess bits
- key.clamp();
-
- // Clone key for inner and outer pads
- var oKey = this._oKey = key.clone();
- var iKey = this._iKey = key.clone();
-
- // Shortcuts
- var oKeyWords = oKey.words;
- var iKeyWords = iKey.words;
-
- // XOR keys with pad constants
- for (var i = 0; i < hasherBlockSize; i++) {
- oKeyWords[i] ^= 0x5c5c5c5c;
- iKeyWords[i] ^= 0x36363636;
- }
- oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
-
- // Set initial values
- this.reset();
- },
-
- /**
- * Resets this HMAC to its initial state.
- *
- * @example
- *
- * hmacHasher.reset();
- */
- reset: function () {
- // Shortcut
- var hasher = this._hasher;
-
- // Reset
- hasher.reset();
- hasher.update(this._iKey);
- },
-
- /**
- * Updates this HMAC with a message.
- *
- * @param {WordArray|string} messageUpdate The message to append.
- *
- * @return {HMAC} This HMAC instance.
- *
- * @example
- *
- * hmacHasher.update('message');
- * hmacHasher.update(wordArray);
- */
- update: function (messageUpdate) {
- this._hasher.update(messageUpdate);
-
- // Chainable
- return this;
- },
-
- /**
- * Finalizes the HMAC computation.
- * Note that the finalize operation is effectively a destructive, read-once operation.
- *
- * @param {WordArray|string} messageUpdate (Optional) A final message update.
- *
- * @return {WordArray} The HMAC.
- *
- * @example
- *
- * var hmac = hmacHasher.finalize();
- * var hmac = hmacHasher.finalize('message');
- * var hmac = hmacHasher.finalize(wordArray);
- */
- finalize: function (messageUpdate) {
- // Shortcut
- var hasher = this._hasher;
-
- // Compute HMAC
- var innerHash = hasher.finalize(messageUpdate);
- hasher.reset();
- var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
-
- return hmac;
- }
- });
-}());
-
-(function () {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var WordArray = C_lib.WordArray;
- var C_enc = C.enc;
-
- /**
- * Base64 encoding strategy.
- */
- var Base64 = C_enc.Base64 = {
- /**
- * Converts a word array to a Base64 string.
- *
- * @param {WordArray} wordArray The word array.
- *
- * @return {string} The Base64 string.
- *
- * @static
- *
- * @example
- *
- * var base64String = CryptoJS.enc.Base64.stringify(wordArray);
- */
- stringify: function (wordArray) {
- // Shortcuts
- var words = wordArray.words;
- var sigBytes = wordArray.sigBytes;
- var map = this._map;
-
- // Clamp excess bits
- wordArray.clamp();
-
- // Convert
- var base64Chars = [];
- for (var i = 0; i < sigBytes; i += 3) {
- var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
- var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
- var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
-
- var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
-
- for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
- base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
- }
- }
-
- // Add padding
- var paddingChar = map.charAt(64);
- if (paddingChar) {
- while (base64Chars.length % 4) {
- base64Chars.push(paddingChar);
- }
- }
-
- return base64Chars.join('');
- },
-
- /**
- * Converts a Base64 string to a word array.
- *
- * @param {string} base64Str The Base64 string.
- *
- * @return {WordArray} The word array.
- *
- * @static
- *
- * @example
- *
- * var wordArray = CryptoJS.enc.Base64.parse(base64String);
- */
- parse: function (base64Str) {
- // Shortcuts
- var base64StrLength = base64Str.length;
- var map = this._map;
-
- // Ignore padding
- var paddingChar = map.charAt(64);
- if (paddingChar) {
- var paddingIndex = base64Str.indexOf(paddingChar);
- if (paddingIndex != -1) {
- base64StrLength = paddingIndex;
- }
- }
-
- // Convert
- var words = [];
- var nBytes = 0;
- for (var i = 0; i < base64StrLength; i++) {
- if (i % 4) {
- var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
- var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
- words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
- nBytes++;
- }
- }
-
- return WordArray.create(words, nBytes);
- },
-
- _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
- };
-}());
-
-(function (Math) {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var WordArray = C_lib.WordArray;
- var Hasher = C_lib.Hasher;
- var C_algo = C.algo;
-
- // Constants table
- var T = [];
-
- // Compute constants
- (function () {
- for (var i = 0; i < 64; i++) {
- T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0;
- }
- }());
-
- /**
- * MD5 hash algorithm.
- */
- var MD5 = C_algo.MD5 = Hasher.extend({
- _doReset: function () {
- this._hash = new WordArray.init([
- 0x67452301, 0xefcdab89,
- 0x98badcfe, 0x10325476
- ]);
- },
-
- _doProcessBlock: function (M, offset) {
- // Swap endian
- for (var i = 0; i < 16; i++) {
- // Shortcuts
- var offset_i = offset + i;
- var M_offset_i = M[offset_i];
-
- M[offset_i] = (
- (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
- (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
- );
- }
-
- // Shortcuts
- var H = this._hash.words;
-
- var M_offset_0 = M[offset + 0];
- var M_offset_1 = M[offset + 1];
- var M_offset_2 = M[offset + 2];
- var M_offset_3 = M[offset + 3];
- var M_offset_4 = M[offset + 4];
- var M_offset_5 = M[offset + 5];
- var M_offset_6 = M[offset + 6];
- var M_offset_7 = M[offset + 7];
- var M_offset_8 = M[offset + 8];
- var M_offset_9 = M[offset + 9];
- var M_offset_10 = M[offset + 10];
- var M_offset_11 = M[offset + 11];
- var M_offset_12 = M[offset + 12];
- var M_offset_13 = M[offset + 13];
- var M_offset_14 = M[offset + 14];
- var M_offset_15 = M[offset + 15];
-
- // Working varialbes
- var a = H[0];
- var b = H[1];
- var c = H[2];
- var d = H[3];
-
- // Computation
- a = FF(a, b, c, d, M_offset_0, 7, T[0]);
- d = FF(d, a, b, c, M_offset_1, 12, T[1]);
- c = FF(c, d, a, b, M_offset_2, 17, T[2]);
- b = FF(b, c, d, a, M_offset_3, 22, T[3]);
- a = FF(a, b, c, d, M_offset_4, 7, T[4]);
- d = FF(d, a, b, c, M_offset_5, 12, T[5]);
- c = FF(c, d, a, b, M_offset_6, 17, T[6]);
- b = FF(b, c, d, a, M_offset_7, 22, T[7]);
- a = FF(a, b, c, d, M_offset_8, 7, T[8]);
- d = FF(d, a, b, c, M_offset_9, 12, T[9]);
- c = FF(c, d, a, b, M_offset_10, 17, T[10]);
- b = FF(b, c, d, a, M_offset_11, 22, T[11]);
- a = FF(a, b, c, d, M_offset_12, 7, T[12]);
- d = FF(d, a, b, c, M_offset_13, 12, T[13]);
- c = FF(c, d, a, b, M_offset_14, 17, T[14]);
- b = FF(b, c, d, a, M_offset_15, 22, T[15]);
-
- a = GG(a, b, c, d, M_offset_1, 5, T[16]);
- d = GG(d, a, b, c, M_offset_6, 9, T[17]);
- c = GG(c, d, a, b, M_offset_11, 14, T[18]);
- b = GG(b, c, d, a, M_offset_0, 20, T[19]);
- a = GG(a, b, c, d, M_offset_5, 5, T[20]);
- d = GG(d, a, b, c, M_offset_10, 9, T[21]);
- c = GG(c, d, a, b, M_offset_15, 14, T[22]);
- b = GG(b, c, d, a, M_offset_4, 20, T[23]);
- a = GG(a, b, c, d, M_offset_9, 5, T[24]);
- d = GG(d, a, b, c, M_offset_14, 9, T[25]);
- c = GG(c, d, a, b, M_offset_3, 14, T[26]);
- b = GG(b, c, d, a, M_offset_8, 20, T[27]);
- a = GG(a, b, c, d, M_offset_13, 5, T[28]);
- d = GG(d, a, b, c, M_offset_2, 9, T[29]);
- c = GG(c, d, a, b, M_offset_7, 14, T[30]);
- b = GG(b, c, d, a, M_offset_12, 20, T[31]);
-
- a = HH(a, b, c, d, M_offset_5, 4, T[32]);
- d = HH(d, a, b, c, M_offset_8, 11, T[33]);
- c = HH(c, d, a, b, M_offset_11, 16, T[34]);
- b = HH(b, c, d, a, M_offset_14, 23, T[35]);
- a = HH(a, b, c, d, M_offset_1, 4, T[36]);
- d = HH(d, a, b, c, M_offset_4, 11, T[37]);
- c = HH(c, d, a, b, M_offset_7, 16, T[38]);
- b = HH(b, c, d, a, M_offset_10, 23, T[39]);
- a = HH(a, b, c, d, M_offset_13, 4, T[40]);
- d = HH(d, a, b, c, M_offset_0, 11, T[41]);
- c = HH(c, d, a, b, M_offset_3, 16, T[42]);
- b = HH(b, c, d, a, M_offset_6, 23, T[43]);
- a = HH(a, b, c, d, M_offset_9, 4, T[44]);
- d = HH(d, a, b, c, M_offset_12, 11, T[45]);
- c = HH(c, d, a, b, M_offset_15, 16, T[46]);
- b = HH(b, c, d, a, M_offset_2, 23, T[47]);
-
- a = II(a, b, c, d, M_offset_0, 6, T[48]);
- d = II(d, a, b, c, M_offset_7, 10, T[49]);
- c = II(c, d, a, b, M_offset_14, 15, T[50]);
- b = II(b, c, d, a, M_offset_5, 21, T[51]);
- a = II(a, b, c, d, M_offset_12, 6, T[52]);
- d = II(d, a, b, c, M_offset_3, 10, T[53]);
- c = II(c, d, a, b, M_offset_10, 15, T[54]);
- b = II(b, c, d, a, M_offset_1, 21, T[55]);
- a = II(a, b, c, d, M_offset_8, 6, T[56]);
- d = II(d, a, b, c, M_offset_15, 10, T[57]);
- c = II(c, d, a, b, M_offset_6, 15, T[58]);
- b = II(b, c, d, a, M_offset_13, 21, T[59]);
- a = II(a, b, c, d, M_offset_4, 6, T[60]);
- d = II(d, a, b, c, M_offset_11, 10, T[61]);
- c = II(c, d, a, b, M_offset_2, 15, T[62]);
- b = II(b, c, d, a, M_offset_9, 21, T[63]);
-
- // Intermediate hash value
- H[0] = (H[0] + a) | 0;
- H[1] = (H[1] + b) | 0;
- H[2] = (H[2] + c) | 0;
- H[3] = (H[3] + d) | 0;
- },
-
- _doFinalize: function () {
- // Shortcuts
- var data = this._data;
- var dataWords = data.words;
-
- var nBitsTotal = this._nDataBytes * 8;
- var nBitsLeft = data.sigBytes * 8;
-
- // Add padding
- dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
-
- var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000);
- var nBitsTotalL = nBitsTotal;
- dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = (
- (((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
- (((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00)
- );
- dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
- (((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
- (((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00)
- );
-
- data.sigBytes = (dataWords.length + 1) * 4;
-
- // Hash final blocks
- this._process();
-
- // Shortcuts
- var hash = this._hash;
- var H = hash.words;
-
- // Swap endian
- for (var i = 0; i < 4; i++) {
- // Shortcut
- var H_i = H[i];
-
- H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
- (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
- }
-
- // Return final computed hash
- return hash;
- },
-
- clone: function () {
- var clone = Hasher.clone.call(this);
- clone._hash = this._hash.clone();
-
- return clone;
- }
- });
-
- function FF(a, b, c, d, x, s, t) {
- var n = a + ((b & c) | (~b & d)) + x + t;
- return ((n << s) | (n >>> (32 - s))) + b;
- }
-
- function GG(a, b, c, d, x, s, t) {
- var n = a + ((b & d) | (c & ~d)) + x + t;
- return ((n << s) | (n >>> (32 - s))) + b;
- }
-
- function HH(a, b, c, d, x, s, t) {
- var n = a + (b ^ c ^ d) + x + t;
- return ((n << s) | (n >>> (32 - s))) + b;
- }
-
- function II(a, b, c, d, x, s, t) {
- var n = a + (c ^ (b | ~d)) + x + t;
- return ((n << s) | (n >>> (32 - s))) + b;
- }
-
- /**
- * Shortcut function to the hasher's object interface.
- *
- * @param {WordArray|string} message The message to hash.
- *
- * @return {WordArray} The hash.
- *
- * @static
- *
- * @example
- *
- * var hash = CryptoJS.MD5('message');
- * var hash = CryptoJS.MD5(wordArray);
- */
- C.MD5 = Hasher._createHelper(MD5);
-
- /**
- * Shortcut function to the HMAC's object interface.
- *
- * @param {WordArray|string} message The message to hash.
- * @param {WordArray|string} key The secret key.
- *
- * @return {WordArray} The HMAC.
- *
- * @static
- *
- * @example
- *
- * var hmac = CryptoJS.HmacMD5(message, key);
- */
- C.HmacMD5 = Hasher._createHmacHelper(MD5);
-}(Math));
-
-(function () {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var Base = C_lib.Base;
- var WordArray = C_lib.WordArray;
- var C_algo = C.algo;
- var MD5 = C_algo.MD5;
-
- /**
- * This key derivation function is meant to conform with EVP_BytesToKey.
- * www.openssl.org/docs/crypto/EVP_BytesToKey.html
- */
- var EvpKDF = C_algo.EvpKDF = Base.extend({
- /**
- * Configuration options.
- *
- * @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
- * @property {Hasher} hasher The hash algorithm to use. Default: MD5
- * @property {number} iterations The number of iterations to perform. Default: 1
- */
- cfg: Base.extend({
- keySize: 128/32,
- hasher: MD5,
- iterations: 1
- }),
-
- /**
- * Initializes a newly created key derivation function.
- *
- * @param {Object} cfg (Optional) The configuration options to use for the derivation.
- *
- * @example
- *
- * var kdf = CryptoJS.algo.EvpKDF.create();
- * var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
- * var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
- */
- init: function (cfg) {
- this.cfg = this.cfg.extend(cfg);
- },
-
- /**
- * Derives a key from a password.
- *
- * @param {WordArray|string} password The password.
- * @param {WordArray|string} salt A salt.
- *
- * @return {WordArray} The derived key.
- *
- * @example
- *
- * var key = kdf.compute(password, salt);
- */
- compute: function (password, salt) {
- // Shortcut
- var cfg = this.cfg;
-
- // Init hasher
- var hasher = cfg.hasher.create();
-
- // Initial values
- var derivedKey = WordArray.create();
-
- // Shortcuts
- var derivedKeyWords = derivedKey.words;
- var keySize = cfg.keySize;
- var iterations = cfg.iterations;
-
- // Generate key
- while (derivedKeyWords.length < keySize) {
- if (block) {
- hasher.update(block);
- }
- var block = hasher.update(password).finalize(salt);
- hasher.reset();
-
- // Iterations
- for (var i = 1; i < iterations; i++) {
- block = hasher.finalize(block);
- hasher.reset();
- }
-
- derivedKey.concat(block);
- }
- derivedKey.sigBytes = keySize * 4;
-
- return derivedKey;
- }
- });
-
- /**
- * Derives a key from a password.
- *
- * @param {WordArray|string} password The password.
- * @param {WordArray|string} salt A salt.
- * @param {Object} cfg (Optional) The configuration options to use for this computation.
- *
- * @return {WordArray} The derived key.
- *
- * @static
- *
- * @example
- *
- * var key = CryptoJS.EvpKDF(password, salt);
- * var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
- * var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
- */
- C.EvpKDF = function (password, salt, cfg) {
- return EvpKDF.create(cfg).compute(password, salt);
- };
-}());
-
-/**
- * Cipher core components.
- */
-CryptoJS.lib.Cipher || (function (undefined) {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var Base = C_lib.Base;
- var WordArray = C_lib.WordArray;
- var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
- var C_enc = C.enc;
- var Utf8 = C_enc.Utf8;
- var Base64 = C_enc.Base64;
- var C_algo = C.algo;
- var EvpKDF = C_algo.EvpKDF;
-
- /**
- * Abstract base cipher template.
- *
- * @property {number} keySize This cipher's key size. Default: 4 (128 bits)
- * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
- * @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
- * @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
- */
- var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
- /**
- * Configuration options.
- *
- * @property {WordArray} iv The IV to use for this operation.
- */
- cfg: Base.extend(),
-
- /**
- * Creates this cipher in encryption mode.
- *
- * @param {WordArray} key The key.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @return {Cipher} A cipher instance.
- *
- * @static
- *
- * @example
- *
- * var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
- */
- createEncryptor: function (key, cfg) {
- return this.create(this._ENC_XFORM_MODE, key, cfg);
- },
-
- /**
- * Creates this cipher in decryption mode.
- *
- * @param {WordArray} key The key.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @return {Cipher} A cipher instance.
- *
- * @static
- *
- * @example
- *
- * var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
- */
- createDecryptor: function (key, cfg) {
- return this.create(this._DEC_XFORM_MODE, key, cfg);
- },
-
- /**
- * Initializes a newly created cipher.
- *
- * @param {number} xformMode Either the encryption or decryption transormation mode constant.
- * @param {WordArray} key The key.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @example
- *
- * var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
- */
- init: function (xformMode, key, cfg) {
- // Apply config defaults
- this.cfg = this.cfg.extend(cfg);
-
- // Store transform mode and key
- this._xformMode = xformMode;
- this._key = key;
-
- // Set initial values
- this.reset();
- },
-
- /**
- * Resets this cipher to its initial state.
- *
- * @example
- *
- * cipher.reset();
- */
- reset: function () {
- // Reset data buffer
- BufferedBlockAlgorithm.reset.call(this);
-
- // Perform concrete-cipher logic
- this._doReset();
- },
-
- /**
- * Adds data to be encrypted or decrypted.
- *
- * @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
- *
- * @return {WordArray} The data after processing.
- *
- * @example
- *
- * var encrypted = cipher.process('data');
- * var encrypted = cipher.process(wordArray);
- */
- process: function (dataUpdate) {
- // Append
- this._append(dataUpdate);
-
- // Process available blocks
- return this._process();
- },
-
- /**
- * Finalizes the encryption or decryption process.
- * Note that the finalize operation is effectively a destructive, read-once operation.
- *
- * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
- *
- * @return {WordArray} The data after final processing.
- *
- * @example
- *
- * var encrypted = cipher.finalize();
- * var encrypted = cipher.finalize('data');
- * var encrypted = cipher.finalize(wordArray);
- */
- finalize: function (dataUpdate) {
- // Final data update
- if (dataUpdate) {
- this._append(dataUpdate);
- }
-
- // Perform concrete-cipher logic
- var finalProcessedData = this._doFinalize();
-
- return finalProcessedData;
- },
-
- keySize: 128/32,
-
- ivSize: 128/32,
-
- _ENC_XFORM_MODE: 1,
-
- _DEC_XFORM_MODE: 2,
-
- /**
- * Creates shortcut functions to a cipher's object interface.
- *
- * @param {Cipher} cipher The cipher to create a helper for.
- *
- * @return {Object} An object with encrypt and decrypt shortcut functions.
- *
- * @static
- *
- * @example
- *
- * var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
- */
- _createHelper: (function () {
- function selectCipherStrategy(key) {
- if (typeof key == 'string') {
- return PasswordBasedCipher;
- } else {
- return SerializableCipher;
- }
- }
-
- return function (cipher) {
- return {
- encrypt: function (message, key, cfg) {
- return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
- },
-
- decrypt: function (ciphertext, key, cfg) {
- return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
- }
- };
- };
- }())
- });
-
- /**
- * Abstract base stream cipher template.
- *
- * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
- */
- var StreamCipher = C_lib.StreamCipher = Cipher.extend({
- _doFinalize: function () {
- // Process partial blocks
- var finalProcessedBlocks = this._process(!!'flush');
-
- return finalProcessedBlocks;
- },
-
- blockSize: 1
- });
-
- /**
- * Mode namespace.
- */
- var C_mode = C.mode = {};
-
- /**
- * Abstract base block cipher mode template.
- */
- var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
- /**
- * Creates this mode for encryption.
- *
- * @param {Cipher} cipher A block cipher instance.
- * @param {Array} iv The IV words.
- *
- * @static
- *
- * @example
- *
- * var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
- */
- createEncryptor: function (cipher, iv) {
- return this.Encryptor.create(cipher, iv);
- },
-
- /**
- * Creates this mode for decryption.
- *
- * @param {Cipher} cipher A block cipher instance.
- * @param {Array} iv The IV words.
- *
- * @static
- *
- * @example
- *
- * var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
- */
- createDecryptor: function (cipher, iv) {
- return this.Decryptor.create(cipher, iv);
- },
-
- /**
- * Initializes a newly created mode.
- *
- * @param {Cipher} cipher A block cipher instance.
- * @param {Array} iv The IV words.
- *
- * @example
- *
- * var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
- */
- init: function (cipher, iv) {
- this._cipher = cipher;
- this._iv = iv;
- }
- });
-
- /**
- * Cipher Block Chaining mode.
- */
- var CBC = C_mode.CBC = (function () {
- /**
- * Abstract base CBC mode.
- */
- var CBC = BlockCipherMode.extend();
-
- /**
- * CBC encryptor.
- */
- CBC.Encryptor = CBC.extend({
- /**
- * Processes the data block at offset.
- *
- * @param {Array} words The data words to operate on.
- * @param {number} offset The offset where the block starts.
- *
- * @example
- *
- * mode.processBlock(data.words, offset);
- */
- processBlock: function (words, offset) {
- // Shortcuts
- var cipher = this._cipher;
- var blockSize = cipher.blockSize;
-
- // XOR and encrypt
- xorBlock.call(this, words, offset, blockSize);
- cipher.encryptBlock(words, offset);
-
- // Remember this block to use with next block
- this._prevBlock = words.slice(offset, offset + blockSize);
- }
- });
-
- /**
- * CBC decryptor.
- */
- CBC.Decryptor = CBC.extend({
- /**
- * Processes the data block at offset.
- *
- * @param {Array} words The data words to operate on.
- * @param {number} offset The offset where the block starts.
- *
- * @example
- *
- * mode.processBlock(data.words, offset);
- */
- processBlock: function (words, offset) {
- // Shortcuts
- var cipher = this._cipher;
- var blockSize = cipher.blockSize;
-
- // Remember this block to use with next block
- var thisBlock = words.slice(offset, offset + blockSize);
-
- // Decrypt and XOR
- cipher.decryptBlock(words, offset);
- xorBlock.call(this, words, offset, blockSize);
-
- // This block becomes the previous block
- this._prevBlock = thisBlock;
- }
- });
-
- function xorBlock(words, offset, blockSize) {
- // Shortcut
- var iv = this._iv;
-
- // Choose mixing block
- if (iv) {
- var block = iv;
-
- // Remove IV for subsequent blocks
- this._iv = undefined;
- } else {
- var block = this._prevBlock;
- }
-
- // XOR blocks
- for (var i = 0; i < blockSize; i++) {
- words[offset + i] ^= block[i];
- }
- }
-
- return CBC;
- }());
-
- /**
- * Padding namespace.
- */
- var C_pad = C.pad = {};
-
- /**
- * PKCS #5/7 padding strategy.
- */
- var Pkcs7 = C_pad.Pkcs7 = {
- /**
- * Pads data using the algorithm defined in PKCS #5/7.
- *
- * @param {WordArray} data The data to pad.
- * @param {number} blockSize The multiple that the data should be padded to.
- *
- * @static
- *
- * @example
- *
- * CryptoJS.pad.Pkcs7.pad(wordArray, 4);
- */
- pad: function (data, blockSize) {
- // Shortcut
- var blockSizeBytes = blockSize * 4;
-
- // Count padding bytes
- var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
-
- // Create padding word
- var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
-
- // Create padding
- var paddingWords = [];
- for (var i = 0; i < nPaddingBytes; i += 4) {
- paddingWords.push(paddingWord);
- }
- var padding = WordArray.create(paddingWords, nPaddingBytes);
-
- // Add padding
- data.concat(padding);
- },
-
- /**
- * Unpads data that had been padded using the algorithm defined in PKCS #5/7.
- *
- * @param {WordArray} data The data to unpad.
- *
- * @static
- *
- * @example
- *
- * CryptoJS.pad.Pkcs7.unpad(wordArray);
- */
- unpad: function (data) {
- // Get number of padding bytes from last byte
- var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
-
- // Remove padding
- data.sigBytes -= nPaddingBytes;
- }
- };
-
- /**
- * Abstract base block cipher template.
- *
- * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
- */
- var BlockCipher = C_lib.BlockCipher = Cipher.extend({
- /**
- * Configuration options.
- *
- * @property {Mode} mode The block mode to use. Default: CBC
- * @property {Padding} padding The padding strategy to use. Default: Pkcs7
- */
- cfg: Cipher.cfg.extend({
- mode: CBC,
- padding: Pkcs7
- }),
-
- reset: function () {
- // Reset cipher
- Cipher.reset.call(this);
-
- // Shortcuts
- var cfg = this.cfg;
- var iv = cfg.iv;
- var mode = cfg.mode;
-
- // Reset block mode
- if (this._xformMode == this._ENC_XFORM_MODE) {
- var modeCreator = mode.createEncryptor;
- } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
- var modeCreator = mode.createDecryptor;
-
- // Keep at least one block in the buffer for unpadding
- this._minBufferSize = 1;
- }
- this._mode = modeCreator.call(mode, this, iv && iv.words);
- },
-
- _doProcessBlock: function (words, offset) {
- this._mode.processBlock(words, offset);
- },
-
- _doFinalize: function () {
- // Shortcut
- var padding = this.cfg.padding;
-
- // Finalize
- if (this._xformMode == this._ENC_XFORM_MODE) {
- // Pad data
- padding.pad(this._data, this.blockSize);
-
- // Process final blocks
- var finalProcessedBlocks = this._process(!!'flush');
- } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
- // Process final blocks
- var finalProcessedBlocks = this._process(!!'flush');
-
- // Unpad data
- padding.unpad(finalProcessedBlocks);
- }
-
- return finalProcessedBlocks;
- },
-
- blockSize: 128/32
- });
-
- /**
- * A collection of cipher parameters.
- *
- * @property {WordArray} ciphertext The raw ciphertext.
- * @property {WordArray} key The key to this ciphertext.
- * @property {WordArray} iv The IV used in the ciphering operation.
- * @property {WordArray} salt The salt used with a key derivation function.
- * @property {Cipher} algorithm The cipher algorithm.
- * @property {Mode} mode The block mode used in the ciphering operation.
- * @property {Padding} padding The padding scheme used in the ciphering operation.
- * @property {number} blockSize The block size of the cipher.
- * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
- */
- var CipherParams = C_lib.CipherParams = Base.extend({
- /**
- * Initializes a newly created cipher params object.
- *
- * @param {Object} cipherParams An object with any of the possible cipher parameters.
- *
- * @example
- *
- * var cipherParams = CryptoJS.lib.CipherParams.create({
- * ciphertext: ciphertextWordArray,
- * key: keyWordArray,
- * iv: ivWordArray,
- * salt: saltWordArray,
- * algorithm: CryptoJS.algo.AES,
- * mode: CryptoJS.mode.CBC,
- * padding: CryptoJS.pad.PKCS7,
- * blockSize: 4,
- * formatter: CryptoJS.format.OpenSSL
- * });
- */
- init: function (cipherParams) {
- this.mixIn(cipherParams);
- },
-
- /**
- * Converts this cipher params object to a string.
- *
- * @param {Format} formatter (Optional) The formatting strategy to use.
- *
- * @return {string} The stringified cipher params.
- *
- * @throws Error If neither the formatter nor the default formatter is set.
- *
- * @example
- *
- * var string = cipherParams + '';
- * var string = cipherParams.toString();
- * var string = cipherParams.toString(CryptoJS.format.OpenSSL);
- */
- toString: function (formatter) {
- return (formatter || this.formatter).stringify(this);
- }
- });
-
- /**
- * Format namespace.
- */
- var C_format = C.format = {};
-
- /**
- * OpenSSL formatting strategy.
- */
- var OpenSSLFormatter = C_format.OpenSSL = {
- /**
- * Converts a cipher params object to an OpenSSL-compatible string.
- *
- * @param {CipherParams} cipherParams The cipher params object.
- *
- * @return {string} The OpenSSL-compatible string.
- *
- * @static
- *
- * @example
- *
- * var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
- */
- stringify: function (cipherParams) {
- // Shortcuts
- var ciphertext = cipherParams.ciphertext;
- var salt = cipherParams.salt;
-
- // Format
- if (salt) {
- var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
- } else {
- var wordArray = ciphertext;
- }
-
- return wordArray.toString(Base64);
- },
-
- /**
- * Converts an OpenSSL-compatible string to a cipher params object.
- *
- * @param {string} openSSLStr The OpenSSL-compatible string.
- *
- * @return {CipherParams} The cipher params object.
- *
- * @static
- *
- * @example
- *
- * var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
- */
- parse: function (openSSLStr) {
- // Parse base64
- var ciphertext = Base64.parse(openSSLStr);
-
- // Shortcut
- var ciphertextWords = ciphertext.words;
-
- // Test for salt
- if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
- // Extract salt
- var salt = WordArray.create(ciphertextWords.slice(2, 4));
-
- // Remove salt from ciphertext
- ciphertextWords.splice(0, 4);
- ciphertext.sigBytes -= 16;
- }
-
- return CipherParams.create({ ciphertext: ciphertext, salt: salt });
- }
- };
-
- /**
- * A cipher wrapper that returns ciphertext as a serializable cipher params object.
- */
- var SerializableCipher = C_lib.SerializableCipher = Base.extend({
- /**
- * Configuration options.
- *
- * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
- */
- cfg: Base.extend({
- format: OpenSSLFormatter
- }),
-
- /**
- * Encrypts a message.
- *
- * @param {Cipher} cipher The cipher algorithm to use.
- * @param {WordArray|string} message The message to encrypt.
- * @param {WordArray} key The key.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @return {CipherParams} A cipher params object.
- *
- * @static
- *
- * @example
- *
- * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
- * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
- * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
- */
- encrypt: function (cipher, message, key, cfg) {
- // Apply config defaults
- cfg = this.cfg.extend(cfg);
-
- // Encrypt
- var encryptor = cipher.createEncryptor(key, cfg);
- var ciphertext = encryptor.finalize(message);
-
- // Shortcut
- var cipherCfg = encryptor.cfg;
-
- // Create and return serializable cipher params
- return CipherParams.create({
- ciphertext: ciphertext,
- key: key,
- iv: cipherCfg.iv,
- algorithm: cipher,
- mode: cipherCfg.mode,
- padding: cipherCfg.padding,
- blockSize: cipher.blockSize,
- formatter: cfg.format
- });
- },
-
- /**
- * Decrypts serialized ciphertext.
- *
- * @param {Cipher} cipher The cipher algorithm to use.
- * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
- * @param {WordArray} key The key.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @return {WordArray} The plaintext.
- *
- * @static
- *
- * @example
- *
- * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
- * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
- */
- decrypt: function (cipher, ciphertext, key, cfg) {
- // Apply config defaults
- cfg = this.cfg.extend(cfg);
-
- // Convert string to CipherParams
- ciphertext = this._parse(ciphertext, cfg.format);
-
- // Decrypt
- var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
-
- return plaintext;
- },
-
- /**
- * Converts serialized ciphertext to CipherParams,
- * else assumed CipherParams already and returns ciphertext unchanged.
- *
- * @param {CipherParams|string} ciphertext The ciphertext.
- * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
- *
- * @return {CipherParams} The unserialized ciphertext.
- *
- * @static
- *
- * @example
- *
- * var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
- */
- _parse: function (ciphertext, format) {
- if (typeof ciphertext == 'string') {
- return format.parse(ciphertext, this);
- } else {
- return ciphertext;
- }
- }
- });
-
- /**
- * Key derivation function namespace.
- */
- var C_kdf = C.kdf = {};
-
- /**
- * OpenSSL key derivation function.
- */
- var OpenSSLKdf = C_kdf.OpenSSL = {
- /**
- * Derives a key and IV from a password.
- *
- * @param {string} password The password to derive from.
- * @param {number} keySize The size in words of the key to generate.
- * @param {number} ivSize The size in words of the IV to generate.
- * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
- *
- * @return {CipherParams} A cipher params object with the key, IV, and salt.
- *
- * @static
- *
- * @example
- *
- * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
- * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
- */
- execute: function (password, keySize, ivSize, salt) {
- // Generate random salt
- if (!salt) {
- salt = WordArray.random(64/8);
- }
-
- // Derive key and IV
- var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
-
- // Separate key and IV
- var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
- key.sigBytes = keySize * 4;
-
- // Return params
- return CipherParams.create({ key: key, iv: iv, salt: salt });
- }
- };
-
- /**
- * A serializable cipher wrapper that derives the key from a password,
- * and returns ciphertext as a serializable cipher params object.
- */
- var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
- /**
- * Configuration options.
- *
- * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
- */
- cfg: SerializableCipher.cfg.extend({
- kdf: OpenSSLKdf
- }),
-
- /**
- * Encrypts a message using a password.
- *
- * @param {Cipher} cipher The cipher algorithm to use.
- * @param {WordArray|string} message The message to encrypt.
- * @param {string} password The password.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @return {CipherParams} A cipher params object.
- *
- * @static
- *
- * @example
- *
- * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
- * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
- */
- encrypt: function (cipher, message, password, cfg) {
- // Apply config defaults
- cfg = this.cfg.extend(cfg);
-
- // Derive key and other params
- var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
-
- // Add IV to config
- cfg.iv = derivedParams.iv;
-
- // Encrypt
- var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
-
- // Mix in derived params
- ciphertext.mixIn(derivedParams);
-
- return ciphertext;
- },
-
- /**
- * Decrypts serialized ciphertext using a password.
- *
- * @param {Cipher} cipher The cipher algorithm to use.
- * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
- * @param {string} password The password.
- * @param {Object} cfg (Optional) The configuration options to use for this operation.
- *
- * @return {WordArray} The plaintext.
- *
- * @static
- *
- * @example
- *
- * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
- * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
- */
- decrypt: function (cipher, ciphertext, password, cfg) {
- // Apply config defaults
- cfg = this.cfg.extend(cfg);
-
- // Convert string to CipherParams
- ciphertext = this._parse(ciphertext, cfg.format);
-
- // Derive key and other params
- var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
-
- // Add IV to config
- cfg.iv = derivedParams.iv;
-
- // Decrypt
- var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
-
- return plaintext;
- }
- });
-}());
-
-(function () {
- // Shortcuts
- var C = CryptoJS;
- var C_lib = C.lib;
- var BlockCipher = C_lib.BlockCipher;
- var C_algo = C.algo;
-
- // Lookup tables
- var SBOX = [];
- var INV_SBOX = [];
- var SUB_MIX_0 = [];
- var SUB_MIX_1 = [];
- var SUB_MIX_2 = [];
- var SUB_MIX_3 = [];
- var INV_SUB_MIX_0 = [];
- var INV_SUB_MIX_1 = [];
- var INV_SUB_MIX_2 = [];
- var INV_SUB_MIX_3 = [];
-
- // Compute lookup tables
- (function () {
- // Compute double table
- var d = [];
- for (var i = 0; i < 256; i++) {
- if (i < 128) {
- d[i] = i << 1;
- } else {
- d[i] = (i << 1) ^ 0x11b;
- }
- }
-
- // Walk GF(2^8)
- var x = 0;
- var xi = 0;
- for (var i = 0; i < 256; i++) {
- // Compute sbox
- var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
- sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
- SBOX[x] = sx;
- INV_SBOX[sx] = x;
-
- // Compute multiplication
- var x2 = d[x];
- var x4 = d[x2];
- var x8 = d[x4];
-
- // Compute sub bytes, mix columns tables
- var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
- SUB_MIX_0[x] = (t << 24) | (t >>> 8);
- SUB_MIX_1[x] = (t << 16) | (t >>> 16);
- SUB_MIX_2[x] = (t << 8) | (t >>> 24);
- SUB_MIX_3[x] = t;
-
- // Compute inv sub bytes, inv mix columns tables
- var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
- INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
- INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
- INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
- INV_SUB_MIX_3[sx] = t;
-
- // Compute next counter
- if (!x) {
- x = xi = 1;
- } else {
- x = x2 ^ d[d[d[x8 ^ x2]]];
- xi ^= d[d[xi]];
- }
- }
- }());
-
- // Precomputed Rcon lookup
- var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
-
- /**
- * AES block cipher algorithm.
- */
- var AES = C_algo.AES = BlockCipher.extend({
- _doReset: function () {
- // Shortcuts
- var key = this._key;
- var keyWords = key.words;
- var keySize = key.sigBytes / 4;
-
- // Compute number of rounds
- var nRounds = this._nRounds = keySize + 6
-
- // Compute number of key schedule rows
- var ksRows = (nRounds + 1) * 4;
-
- // Compute key schedule
- var keySchedule = this._keySchedule = [];
- for (var ksRow = 0; ksRow < ksRows; ksRow++) {
- if (ksRow < keySize) {
- keySchedule[ksRow] = keyWords[ksRow];
- } else {
- var t = keySchedule[ksRow - 1];
-
- if (!(ksRow % keySize)) {
- // Rot word
- t = (t << 8) | (t >>> 24);
-
- // Sub word
- t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
-
- // Mix Rcon
- t ^= RCON[(ksRow / keySize) | 0] << 24;
- } else if (keySize > 6 && ksRow % keySize == 4) {
- // Sub word
- t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
- }
-
- keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
- }
- }
-
- // Compute inv key schedule
- var invKeySchedule = this._invKeySchedule = [];
- for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
- var ksRow = ksRows - invKsRow;
-
- if (invKsRow % 4) {
- var t = keySchedule[ksRow];
- } else {
- var t = keySchedule[ksRow - 4];
- }
-
- if (invKsRow < 4 || ksRow <= 4) {
- invKeySchedule[invKsRow] = t;
- } else {
- invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
- INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
- }
- }
- },
-
- encryptBlock: function (M, offset) {
- this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
- },
-
- decryptBlock: function (M, offset) {
- // Swap 2nd and 4th rows
- var t = M[offset + 1];
- M[offset + 1] = M[offset + 3];
- M[offset + 3] = t;
-
- this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
-
- // Inv swap 2nd and 4th rows
- var t = M[offset + 1];
- M[offset + 1] = M[offset + 3];
- M[offset + 3] = t;
- },
-
- _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
- // Shortcut
- var nRounds = this._nRounds;
-
- // Get input, add round key
- var s0 = M[offset] ^ keySchedule[0];
- var s1 = M[offset + 1] ^ keySchedule[1];
- var s2 = M[offset + 2] ^ keySchedule[2];
- var s3 = M[offset + 3] ^ keySchedule[3];
-
- // Key schedule row counter
- var ksRow = 4;
-
- // Rounds
- for (var round = 1; round < nRounds; round++) {
- // Shift rows, sub bytes, mix columns, add round key
- var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
- var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
- var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
- var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
-
- // Update state
- s0 = t0;
- s1 = t1;
- s2 = t2;
- s3 = t3;
- }
-
- // Shift rows, sub bytes, add round key
- var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
- var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
- var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
- var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
-
- // Set output
- M[offset] = t0;
- M[offset + 1] = t1;
- M[offset + 2] = t2;
- M[offset + 3] = t3;
- },
-
- keySize: 256/32
- });
-
- /**
- * Shortcut functions to the cipher's object interface.
- *
- * @example
- *
- * var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
- * var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
- */
- C.AES = BlockCipher._createHelper(AES);
-}());
diff --git a/js/helpers.js b/js/helpers.js
index cd190484..c4df1f45 100644
--- a/js/helpers.js
+++ b/js/helpers.js
@@ -100,7 +100,6 @@ window.textsecure = window.textsecure || {};
var StaticByteBufferProto = new dcodeIO.ByteBuffer().__proto__;
var StaticArrayBufferProto = new ArrayBuffer().__proto__;
var StaticUint8ArrayProto = new Uint8Array().__proto__;
-var StaticWordArrayProto = CryptoJS.lib.WordArray.create('').__proto__;
function getString(thing) {
if (thing === Object(thing)) {
if (thing.__proto__ == StaticUint8ArrayProto)
@@ -109,8 +108,6 @@ function getString(thing) {
return getString(new Uint8Array(thing));
if (thing.__proto__ == StaticByteBufferProto)
return thing.toString("binary");
- if (thing.__proto__ == StaticWordArrayProto)
- return thing.toString(CryptoJS.enc.Latin1);
}
return thing;
}
diff --git a/js/webcrypto.js b/js/webcrypto.js
index 5ac5531a..024d40c8 100644
--- a/js/webcrypto.js
+++ b/js/webcrypto.js
@@ -1,3 +1,2549 @@
+;(function(){
+/**
+ * CryptoJS core components.
+ */
+var CryptoJS = CryptoJS || (function (Math, undefined) {
+ /**
+ * CryptoJS namespace.
+ */
+ var C = {};
+
+ /**
+ * Library namespace.
+ */
+ var C_lib = C.lib = {};
+
+ /**
+ * Base object for prototypal inheritance.
+ */
+ var Base = C_lib.Base = (function () {
+ function F() {}
+
+ return {
+ /**
+ * Creates a new object that inherits from this object.
+ *
+ * @param {Object} overrides Properties to copy into the new object.
+ *
+ * @return {Object} The new object.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var MyType = CryptoJS.lib.Base.extend({
+ * field: 'value',
+ *
+ * method: function () {
+ * }
+ * });
+ */
+ extend: function (overrides) {
+ // Spawn
+ F.prototype = this;
+ var subtype = new F();
+
+ // Augment
+ if (overrides) {
+ subtype.mixIn(overrides);
+ }
+
+ // Create default initializer
+ if (!subtype.hasOwnProperty('init')) {
+ subtype.init = function () {
+ subtype.$super.init.apply(this, arguments);
+ };
+ }
+
+ // Initializer's prototype is the subtype object
+ subtype.init.prototype = subtype;
+
+ // Reference supertype
+ subtype.$super = this;
+
+ return subtype;
+ },
+
+ /**
+ * Extends this object and runs the init method.
+ * Arguments to create() will be passed to init().
+ *
+ * @return {Object} The new object.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var instance = MyType.create();
+ */
+ create: function () {
+ var instance = this.extend();
+ instance.init.apply(instance, arguments);
+
+ return instance;
+ },
+
+ /**
+ * Initializes a newly created object.
+ * Override this method to add some logic when your objects are created.
+ *
+ * @example
+ *
+ * var MyType = CryptoJS.lib.Base.extend({
+ * init: function () {
+ * // ...
+ * }
+ * });
+ */
+ init: function () {
+ },
+
+ /**
+ * Copies properties into this object.
+ *
+ * @param {Object} properties The properties to mix in.
+ *
+ * @example
+ *
+ * MyType.mixIn({
+ * field: 'value'
+ * });
+ */
+ mixIn: function (properties) {
+ for (var propertyName in properties) {
+ if (properties.hasOwnProperty(propertyName)) {
+ this[propertyName] = properties[propertyName];
+ }
+ }
+
+ // IE won't copy toString using the loop above
+ if (properties.hasOwnProperty('toString')) {
+ this.toString = properties.toString;
+ }
+ },
+
+ /**
+ * Creates a copy of this object.
+ *
+ * @return {Object} The clone.
+ *
+ * @example
+ *
+ * var clone = instance.clone();
+ */
+ clone: function () {
+ return this.init.prototype.extend(this);
+ }
+ };
+ }());
+
+ /**
+ * An array of 32-bit words.
+ *
+ * @property {Array} words The array of 32-bit words.
+ * @property {number} sigBytes The number of significant bytes in this word array.
+ */
+ var WordArray = C_lib.WordArray = Base.extend({
+ /**
+ * Initializes a newly created word array.
+ *
+ * @param {Array} words (Optional) An array of 32-bit words.
+ * @param {number} sigBytes (Optional) The number of significant bytes in the words.
+ *
+ * @example
+ *
+ * var wordArray = CryptoJS.lib.WordArray.create();
+ * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
+ * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
+ */
+ init: function (words, sigBytes) {
+ words = this.words = words || [];
+
+ if (sigBytes != undefined) {
+ this.sigBytes = sigBytes;
+ } else {
+ this.sigBytes = words.length * 4;
+ }
+ },
+
+ /**
+ * Converts this word array to a string.
+ *
+ * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
+ *
+ * @return {string} The stringified word array.
+ *
+ * @example
+ *
+ * var string = wordArray + '';
+ * var string = wordArray.toString();
+ * var string = wordArray.toString(CryptoJS.enc.Utf8);
+ */
+ toString: function (encoder) {
+ return (encoder || Hex).stringify(this);
+ },
+
+ /**
+ * Concatenates a word array to this word array.
+ *
+ * @param {WordArray} wordArray The word array to append.
+ *
+ * @return {WordArray} This word array.
+ *
+ * @example
+ *
+ * wordArray1.concat(wordArray2);
+ */
+ concat: function (wordArray) {
+ // Shortcuts
+ var thisWords = this.words;
+ var thatWords = wordArray.words;
+ var thisSigBytes = this.sigBytes;
+ var thatSigBytes = wordArray.sigBytes;
+
+ // Clamp excess bits
+ this.clamp();
+
+ // Concat
+ if (thisSigBytes % 4) {
+ // Copy one byte at a time
+ for (var i = 0; i < thatSigBytes; i++) {
+ var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
+ thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
+ }
+ } else if (thatWords.length > 0xffff) {
+ // Copy one word at a time
+ for (var i = 0; i < thatSigBytes; i += 4) {
+ thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
+ }
+ } else {
+ // Copy all words at once
+ thisWords.push.apply(thisWords, thatWords);
+ }
+ this.sigBytes += thatSigBytes;
+
+ // Chainable
+ return this;
+ },
+
+ /**
+ * Removes insignificant bits.
+ *
+ * @example
+ *
+ * wordArray.clamp();
+ */
+ clamp: function () {
+ // Shortcuts
+ var words = this.words;
+ var sigBytes = this.sigBytes;
+
+ // Clamp
+ words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
+ words.length = Math.ceil(sigBytes / 4);
+ },
+
+ /**
+ * Creates a copy of this word array.
+ *
+ * @return {WordArray} The clone.
+ *
+ * @example
+ *
+ * var clone = wordArray.clone();
+ */
+ clone: function () {
+ var clone = Base.clone.call(this);
+ clone.words = this.words.slice(0);
+
+ return clone;
+ },
+
+ /**
+ * Creates a word array filled with random bytes.
+ *
+ * @param {number} nBytes The number of random bytes to generate.
+ *
+ * @return {WordArray} The random word array.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var wordArray = CryptoJS.lib.WordArray.random(16);
+ */
+ random: function (nBytes) {
+ var words = [];
+ for (var i = 0; i < nBytes; i += 4) {
+ words.push((Math.random() * 0x100000000) | 0);
+ }
+
+ return new WordArray.init(words, nBytes);
+ }
+ });
+
+ /**
+ * Encoder namespace.
+ */
+ var C_enc = C.enc = {};
+
+ /**
+ * Hex encoding strategy.
+ */
+ var Hex = C_enc.Hex = {
+ /**
+ * Converts a word array to a hex string.
+ *
+ * @param {WordArray} wordArray The word array.
+ *
+ * @return {string} The hex string.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var hexString = CryptoJS.enc.Hex.stringify(wordArray);
+ */
+ stringify: function (wordArray) {
+ // Shortcuts
+ var words = wordArray.words;
+ var sigBytes = wordArray.sigBytes;
+
+ // Convert
+ var hexChars = [];
+ for (var i = 0; i < sigBytes; i++) {
+ var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
+ hexChars.push((bite >>> 4).toString(16));
+ hexChars.push((bite & 0x0f).toString(16));
+ }
+
+ return hexChars.join('');
+ },
+
+ /**
+ * Converts a hex string to a word array.
+ *
+ * @param {string} hexStr The hex string.
+ *
+ * @return {WordArray} The word array.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var wordArray = CryptoJS.enc.Hex.parse(hexString);
+ */
+ parse: function (hexStr) {
+ // Shortcut
+ var hexStrLength = hexStr.length;
+
+ // Convert
+ var words = [];
+ for (var i = 0; i < hexStrLength; i += 2) {
+ words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
+ }
+
+ return new WordArray.init(words, hexStrLength / 2);
+ }
+ };
+
+ /**
+ * Latin1 encoding strategy.
+ */
+ var Latin1 = C_enc.Latin1 = {
+ /**
+ * Converts a word array to a Latin1 string.
+ *
+ * @param {WordArray} wordArray The word array.
+ *
+ * @return {string} The Latin1 string.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
+ */
+ stringify: function (wordArray) {
+ // Shortcuts
+ var words = wordArray.words;
+ var sigBytes = wordArray.sigBytes;
+
+ // Convert
+ var latin1Chars = [];
+ for (var i = 0; i < sigBytes; i++) {
+ var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
+ latin1Chars.push(String.fromCharCode(bite));
+ }
+
+ return latin1Chars.join('');
+ },
+
+ /**
+ * Converts a Latin1 string to a word array.
+ *
+ * @param {string} latin1Str The Latin1 string.
+ *
+ * @return {WordArray} The word array.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
+ */
+ parse: function (latin1Str) {
+ // Shortcut
+ var latin1StrLength = latin1Str.length;
+
+ // Convert
+ var words = [];
+ for (var i = 0; i < latin1StrLength; i++) {
+ words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
+ }
+
+ return new WordArray.init(words, latin1StrLength);
+ }
+ };
+
+ /**
+ * UTF-8 encoding strategy.
+ */
+ var Utf8 = C_enc.Utf8 = {
+ /**
+ * Converts a word array to a UTF-8 string.
+ *
+ * @param {WordArray} wordArray The word array.
+ *
+ * @return {string} The UTF-8 string.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
+ */
+ stringify: function (wordArray) {
+ try {
+ return decodeURIComponent(escape(Latin1.stringify(wordArray)));
+ } catch (e) {
+ throw new Error('Malformed UTF-8 data');
+ }
+ },
+
+ /**
+ * Converts a UTF-8 string to a word array.
+ *
+ * @param {string} utf8Str The UTF-8 string.
+ *
+ * @return {WordArray} The word array.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
+ */
+ parse: function (utf8Str) {
+ return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
+ }
+ };
+
+ /**
+ * Abstract buffered block algorithm template.
+ *
+ * The property blockSize must be implemented in a concrete subtype.
+ *
+ * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
+ */
+ var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
+ /**
+ * Resets this block algorithm's data buffer to its initial state.
+ *
+ * @example
+ *
+ * bufferedBlockAlgorithm.reset();
+ */
+ reset: function () {
+ // Initial values
+ this._data = new WordArray.init();
+ this._nDataBytes = 0;
+ },
+
+ /**
+ * Adds new data to this block algorithm's buffer.
+ *
+ * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
+ *
+ * @example
+ *
+ * bufferedBlockAlgorithm._append('data');
+ * bufferedBlockAlgorithm._append(wordArray);
+ */
+ _append: function (data) {
+ // Convert string to WordArray, else assume WordArray already
+ if (typeof data == 'string') {
+ data = Utf8.parse(data);
+ }
+
+ // Append
+ this._data.concat(data);
+ this._nDataBytes += data.sigBytes;
+ },
+
+ /**
+ * Processes available data blocks.
+ *
+ * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
+ *
+ * @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
+ *
+ * @return {WordArray} The processed data.
+ *
+ * @example
+ *
+ * var processedData = bufferedBlockAlgorithm._process();
+ * var processedData = bufferedBlockAlgorithm._process(!!'flush');
+ */
+ _process: function (doFlush) {
+ // Shortcuts
+ var data = this._data;
+ var dataWords = data.words;
+ var dataSigBytes = data.sigBytes;
+ var blockSize = this.blockSize;
+ var blockSizeBytes = blockSize * 4;
+
+ // Count blocks ready
+ var nBlocksReady = dataSigBytes / blockSizeBytes;
+ if (doFlush) {
+ // Round up to include partial blocks
+ nBlocksReady = Math.ceil(nBlocksReady);
+ } else {
+ // Round down to include only full blocks,
+ // less the number of blocks that must remain in the buffer
+ nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
+ }
+
+ // Count words ready
+ var nWordsReady = nBlocksReady * blockSize;
+
+ // Count bytes ready
+ var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
+
+ // Process blocks
+ if (nWordsReady) {
+ for (var offset = 0; offset < nWordsReady; offset += blockSize) {
+ // Perform concrete-algorithm logic
+ this._doProcessBlock(dataWords, offset);
+ }
+
+ // Remove processed words
+ var processedWords = dataWords.splice(0, nWordsReady);
+ data.sigBytes -= nBytesReady;
+ }
+
+ // Return processed words
+ return new WordArray.init(processedWords, nBytesReady);
+ },
+
+ /**
+ * Creates a copy of this object.
+ *
+ * @return {Object} The clone.
+ *
+ * @example
+ *
+ * var clone = bufferedBlockAlgorithm.clone();
+ */
+ clone: function () {
+ var clone = Base.clone.call(this);
+ clone._data = this._data.clone();
+
+ return clone;
+ },
+
+ _minBufferSize: 0
+ });
+
+ /**
+ * Abstract hasher template.
+ *
+ * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
+ */
+ var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
+ /**
+ * Configuration options.
+ */
+ cfg: Base.extend(),
+
+ /**
+ * Initializes a newly created hasher.
+ *
+ * @param {Object} cfg (Optional) The configuration options to use for this hash computation.
+ *
+ * @example
+ *
+ * var hasher = CryptoJS.algo.SHA256.create();
+ */
+ init: function (cfg) {
+ // Apply config defaults
+ this.cfg = this.cfg.extend(cfg);
+
+ // Set initial values
+ this.reset();
+ },
+
+ /**
+ * Resets this hasher to its initial state.
+ *
+ * @example
+ *
+ * hasher.reset();
+ */
+ reset: function () {
+ // Reset data buffer
+ BufferedBlockAlgorithm.reset.call(this);
+
+ // Perform concrete-hasher logic
+ this._doReset();
+ },
+
+ /**
+ * Updates this hasher with a message.
+ *
+ * @param {WordArray|string} messageUpdate The message to append.
+ *
+ * @return {Hasher} This hasher.
+ *
+ * @example
+ *
+ * hasher.update('message');
+ * hasher.update(wordArray);
+ */
+ update: function (messageUpdate) {
+ // Append
+ this._append(messageUpdate);
+
+ // Update the hash
+ this._process();
+
+ // Chainable
+ return this;
+ },
+
+ /**
+ * Finalizes the hash computation.
+ * Note that the finalize operation is effectively a destructive, read-once operation.
+ *
+ * @param {WordArray|string} messageUpdate (Optional) A final message update.
+ *
+ * @return {WordArray} The hash.
+ *
+ * @example
+ *
+ * var hash = hasher.finalize();
+ * var hash = hasher.finalize('message');
+ * var hash = hasher.finalize(wordArray);
+ */
+ finalize: function (messageUpdate) {
+ // Final message update
+ if (messageUpdate) {
+ this._append(messageUpdate);
+ }
+
+ // Perform concrete-hasher logic
+ var hash = this._doFinalize();
+
+ return hash;
+ },
+
+ blockSize: 512/32,
+
+ /**
+ * Creates a shortcut function to a hasher's object interface.
+ *
+ * @param {Hasher} hasher The hasher to create a helper for.
+ *
+ * @return {Function} The shortcut function.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
+ */
+ _createHelper: function (hasher) {
+ return function (message, cfg) {
+ return new hasher.init(cfg).finalize(message);
+ };
+ },
+
+ /**
+ * Creates a shortcut function to the HMAC's object interface.
+ *
+ * @param {Hasher} hasher The hasher to use in this HMAC helper.
+ *
+ * @return {Function} The shortcut function.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
+ */
+ _createHmacHelper: function (hasher) {
+ return function (message, key) {
+ return new C_algo.HMAC.init(hasher, key).finalize(message);
+ };
+ }
+ });
+
+ /**
+ * Algorithm namespace.
+ */
+ var C_algo = C.algo = {};
+
+ return C;
+}(Math));
+
+(function (Math) {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var WordArray = C_lib.WordArray;
+ var Hasher = C_lib.Hasher;
+ var C_algo = C.algo;
+
+ // Initialization and round constants tables
+ var H = [];
+ var K = [];
+
+ // Compute constants
+ (function () {
+ function isPrime(n) {
+ var sqrtN = Math.sqrt(n);
+ for (var factor = 2; factor <= sqrtN; factor++) {
+ if (!(n % factor)) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ function getFractionalBits(n) {
+ return ((n - (n | 0)) * 0x100000000) | 0;
+ }
+
+ var n = 2;
+ var nPrime = 0;
+ while (nPrime < 64) {
+ if (isPrime(n)) {
+ if (nPrime < 8) {
+ H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
+ }
+ K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));
+
+ nPrime++;
+ }
+
+ n++;
+ }
+ }());
+
+ // Reusable object
+ var W = [];
+
+ /**
+ * SHA-256 hash algorithm.
+ */
+ var SHA256 = C_algo.SHA256 = Hasher.extend({
+ _doReset: function () {
+ this._hash = new WordArray.init(H.slice(0));
+ },
+
+ _doProcessBlock: function (M, offset) {
+ // Shortcut
+ var H = this._hash.words;
+
+ // Working variables
+ var a = H[0];
+ var b = H[1];
+ var c = H[2];
+ var d = H[3];
+ var e = H[4];
+ var f = H[5];
+ var g = H[6];
+ var h = H[7];
+
+ // Computation
+ for (var i = 0; i < 64; i++) {
+ if (i < 16) {
+ W[i] = M[offset + i] | 0;
+ } else {
+ var gamma0x = W[i - 15];
+ var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^
+ ((gamma0x << 14) | (gamma0x >>> 18)) ^
+ (gamma0x >>> 3);
+
+ var gamma1x = W[i - 2];
+ var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^
+ ((gamma1x << 13) | (gamma1x >>> 19)) ^
+ (gamma1x >>> 10);
+
+ W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
+ }
+
+ var ch = (e & f) ^ (~e & g);
+ var maj = (a & b) ^ (a & c) ^ (b & c);
+
+ var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
+ var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25));
+
+ var t1 = h + sigma1 + ch + K[i] + W[i];
+ var t2 = sigma0 + maj;
+
+ h = g;
+ g = f;
+ f = e;
+ e = (d + t1) | 0;
+ d = c;
+ c = b;
+ b = a;
+ a = (t1 + t2) | 0;
+ }
+
+ // Intermediate hash value
+ H[0] = (H[0] + a) | 0;
+ H[1] = (H[1] + b) | 0;
+ H[2] = (H[2] + c) | 0;
+ H[3] = (H[3] + d) | 0;
+ H[4] = (H[4] + e) | 0;
+ H[5] = (H[5] + f) | 0;
+ H[6] = (H[6] + g) | 0;
+ H[7] = (H[7] + h) | 0;
+ },
+
+ _doFinalize: function () {
+ // Shortcuts
+ var data = this._data;
+ var dataWords = data.words;
+
+ var nBitsTotal = this._nDataBytes * 8;
+ var nBitsLeft = data.sigBytes * 8;
+
+ // Add padding
+ dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
+ dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
+ dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
+ data.sigBytes = dataWords.length * 4;
+
+ // Hash final blocks
+ this._process();
+
+ // Return final computed hash
+ return this._hash;
+ },
+
+ clone: function () {
+ var clone = Hasher.clone.call(this);
+ clone._hash = this._hash.clone();
+
+ return clone;
+ }
+ });
+
+ /**
+ * Shortcut function to the hasher's object interface.
+ *
+ * @param {WordArray|string} message The message to hash.
+ *
+ * @return {WordArray} The hash.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var hash = CryptoJS.SHA256('message');
+ * var hash = CryptoJS.SHA256(wordArray);
+ */
+ C.SHA256 = Hasher._createHelper(SHA256);
+
+ /**
+ * Shortcut function to the HMAC's object interface.
+ *
+ * @param {WordArray|string} message The message to hash.
+ * @param {WordArray|string} key The secret key.
+ *
+ * @return {WordArray} The HMAC.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var hmac = CryptoJS.HmacSHA256(message, key);
+ */
+ C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
+}(Math));
+
+(function () {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var Base = C_lib.Base;
+ var C_enc = C.enc;
+ var Utf8 = C_enc.Utf8;
+ var C_algo = C.algo;
+
+ /**
+ * HMAC algorithm.
+ */
+ var HMAC = C_algo.HMAC = Base.extend({
+ /**
+ * Initializes a newly created HMAC.
+ *
+ * @param {Hasher} hasher The hash algorithm to use.
+ * @param {WordArray|string} key The secret key.
+ *
+ * @example
+ *
+ * var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
+ */
+ init: function (hasher, key) {
+ // Init hasher
+ hasher = this._hasher = new hasher.init();
+
+ // Convert string to WordArray, else assume WordArray already
+ if (typeof key == 'string') {
+ key = Utf8.parse(key);
+ }
+
+ // Shortcuts
+ var hasherBlockSize = hasher.blockSize;
+ var hasherBlockSizeBytes = hasherBlockSize * 4;
+
+ // Allow arbitrary length keys
+ if (key.sigBytes > hasherBlockSizeBytes) {
+ key = hasher.finalize(key);
+ }
+
+ // Clamp excess bits
+ key.clamp();
+
+ // Clone key for inner and outer pads
+ var oKey = this._oKey = key.clone();
+ var iKey = this._iKey = key.clone();
+
+ // Shortcuts
+ var oKeyWords = oKey.words;
+ var iKeyWords = iKey.words;
+
+ // XOR keys with pad constants
+ for (var i = 0; i < hasherBlockSize; i++) {
+ oKeyWords[i] ^= 0x5c5c5c5c;
+ iKeyWords[i] ^= 0x36363636;
+ }
+ oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
+
+ // Set initial values
+ this.reset();
+ },
+
+ /**
+ * Resets this HMAC to its initial state.
+ *
+ * @example
+ *
+ * hmacHasher.reset();
+ */
+ reset: function () {
+ // Shortcut
+ var hasher = this._hasher;
+
+ // Reset
+ hasher.reset();
+ hasher.update(this._iKey);
+ },
+
+ /**
+ * Updates this HMAC with a message.
+ *
+ * @param {WordArray|string} messageUpdate The message to append.
+ *
+ * @return {HMAC} This HMAC instance.
+ *
+ * @example
+ *
+ * hmacHasher.update('message');
+ * hmacHasher.update(wordArray);
+ */
+ update: function (messageUpdate) {
+ this._hasher.update(messageUpdate);
+
+ // Chainable
+ return this;
+ },
+
+ /**
+ * Finalizes the HMAC computation.
+ * Note that the finalize operation is effectively a destructive, read-once operation.
+ *
+ * @param {WordArray|string} messageUpdate (Optional) A final message update.
+ *
+ * @return {WordArray} The HMAC.
+ *
+ * @example
+ *
+ * var hmac = hmacHasher.finalize();
+ * var hmac = hmacHasher.finalize('message');
+ * var hmac = hmacHasher.finalize(wordArray);
+ */
+ finalize: function (messageUpdate) {
+ // Shortcut
+ var hasher = this._hasher;
+
+ // Compute HMAC
+ var innerHash = hasher.finalize(messageUpdate);
+ hasher.reset();
+ var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
+
+ return hmac;
+ }
+ });
+}());
+
+(function () {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var WordArray = C_lib.WordArray;
+ var C_enc = C.enc;
+
+ /**
+ * Base64 encoding strategy.
+ */
+ var Base64 = C_enc.Base64 = {
+ /**
+ * Converts a word array to a Base64 string.
+ *
+ * @param {WordArray} wordArray The word array.
+ *
+ * @return {string} The Base64 string.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var base64String = CryptoJS.enc.Base64.stringify(wordArray);
+ */
+ stringify: function (wordArray) {
+ // Shortcuts
+ var words = wordArray.words;
+ var sigBytes = wordArray.sigBytes;
+ var map = this._map;
+
+ // Clamp excess bits
+ wordArray.clamp();
+
+ // Convert
+ var base64Chars = [];
+ for (var i = 0; i < sigBytes; i += 3) {
+ var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
+ var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
+ var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
+
+ var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
+
+ for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
+ base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
+ }
+ }
+
+ // Add padding
+ var paddingChar = map.charAt(64);
+ if (paddingChar) {
+ while (base64Chars.length % 4) {
+ base64Chars.push(paddingChar);
+ }
+ }
+
+ return base64Chars.join('');
+ },
+
+ /**
+ * Converts a Base64 string to a word array.
+ *
+ * @param {string} base64Str The Base64 string.
+ *
+ * @return {WordArray} The word array.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var wordArray = CryptoJS.enc.Base64.parse(base64String);
+ */
+ parse: function (base64Str) {
+ // Shortcuts
+ var base64StrLength = base64Str.length;
+ var map = this._map;
+
+ // Ignore padding
+ var paddingChar = map.charAt(64);
+ if (paddingChar) {
+ var paddingIndex = base64Str.indexOf(paddingChar);
+ if (paddingIndex != -1) {
+ base64StrLength = paddingIndex;
+ }
+ }
+
+ // Convert
+ var words = [];
+ var nBytes = 0;
+ for (var i = 0; i < base64StrLength; i++) {
+ if (i % 4) {
+ var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
+ var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
+ words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
+ nBytes++;
+ }
+ }
+
+ return WordArray.create(words, nBytes);
+ },
+
+ _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
+ };
+}());
+
+(function (Math) {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var WordArray = C_lib.WordArray;
+ var Hasher = C_lib.Hasher;
+ var C_algo = C.algo;
+
+ // Constants table
+ var T = [];
+
+ // Compute constants
+ (function () {
+ for (var i = 0; i < 64; i++) {
+ T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0;
+ }
+ }());
+
+ /**
+ * MD5 hash algorithm.
+ */
+ var MD5 = C_algo.MD5 = Hasher.extend({
+ _doReset: function () {
+ this._hash = new WordArray.init([
+ 0x67452301, 0xefcdab89,
+ 0x98badcfe, 0x10325476
+ ]);
+ },
+
+ _doProcessBlock: function (M, offset) {
+ // Swap endian
+ for (var i = 0; i < 16; i++) {
+ // Shortcuts
+ var offset_i = offset + i;
+ var M_offset_i = M[offset_i];
+
+ M[offset_i] = (
+ (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
+ (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
+ );
+ }
+
+ // Shortcuts
+ var H = this._hash.words;
+
+ var M_offset_0 = M[offset + 0];
+ var M_offset_1 = M[offset + 1];
+ var M_offset_2 = M[offset + 2];
+ var M_offset_3 = M[offset + 3];
+ var M_offset_4 = M[offset + 4];
+ var M_offset_5 = M[offset + 5];
+ var M_offset_6 = M[offset + 6];
+ var M_offset_7 = M[offset + 7];
+ var M_offset_8 = M[offset + 8];
+ var M_offset_9 = M[offset + 9];
+ var M_offset_10 = M[offset + 10];
+ var M_offset_11 = M[offset + 11];
+ var M_offset_12 = M[offset + 12];
+ var M_offset_13 = M[offset + 13];
+ var M_offset_14 = M[offset + 14];
+ var M_offset_15 = M[offset + 15];
+
+ // Working varialbes
+ var a = H[0];
+ var b = H[1];
+ var c = H[2];
+ var d = H[3];
+
+ // Computation
+ a = FF(a, b, c, d, M_offset_0, 7, T[0]);
+ d = FF(d, a, b, c, M_offset_1, 12, T[1]);
+ c = FF(c, d, a, b, M_offset_2, 17, T[2]);
+ b = FF(b, c, d, a, M_offset_3, 22, T[3]);
+ a = FF(a, b, c, d, M_offset_4, 7, T[4]);
+ d = FF(d, a, b, c, M_offset_5, 12, T[5]);
+ c = FF(c, d, a, b, M_offset_6, 17, T[6]);
+ b = FF(b, c, d, a, M_offset_7, 22, T[7]);
+ a = FF(a, b, c, d, M_offset_8, 7, T[8]);
+ d = FF(d, a, b, c, M_offset_9, 12, T[9]);
+ c = FF(c, d, a, b, M_offset_10, 17, T[10]);
+ b = FF(b, c, d, a, M_offset_11, 22, T[11]);
+ a = FF(a, b, c, d, M_offset_12, 7, T[12]);
+ d = FF(d, a, b, c, M_offset_13, 12, T[13]);
+ c = FF(c, d, a, b, M_offset_14, 17, T[14]);
+ b = FF(b, c, d, a, M_offset_15, 22, T[15]);
+
+ a = GG(a, b, c, d, M_offset_1, 5, T[16]);
+ d = GG(d, a, b, c, M_offset_6, 9, T[17]);
+ c = GG(c, d, a, b, M_offset_11, 14, T[18]);
+ b = GG(b, c, d, a, M_offset_0, 20, T[19]);
+ a = GG(a, b, c, d, M_offset_5, 5, T[20]);
+ d = GG(d, a, b, c, M_offset_10, 9, T[21]);
+ c = GG(c, d, a, b, M_offset_15, 14, T[22]);
+ b = GG(b, c, d, a, M_offset_4, 20, T[23]);
+ a = GG(a, b, c, d, M_offset_9, 5, T[24]);
+ d = GG(d, a, b, c, M_offset_14, 9, T[25]);
+ c = GG(c, d, a, b, M_offset_3, 14, T[26]);
+ b = GG(b, c, d, a, M_offset_8, 20, T[27]);
+ a = GG(a, b, c, d, M_offset_13, 5, T[28]);
+ d = GG(d, a, b, c, M_offset_2, 9, T[29]);
+ c = GG(c, d, a, b, M_offset_7, 14, T[30]);
+ b = GG(b, c, d, a, M_offset_12, 20, T[31]);
+
+ a = HH(a, b, c, d, M_offset_5, 4, T[32]);
+ d = HH(d, a, b, c, M_offset_8, 11, T[33]);
+ c = HH(c, d, a, b, M_offset_11, 16, T[34]);
+ b = HH(b, c, d, a, M_offset_14, 23, T[35]);
+ a = HH(a, b, c, d, M_offset_1, 4, T[36]);
+ d = HH(d, a, b, c, M_offset_4, 11, T[37]);
+ c = HH(c, d, a, b, M_offset_7, 16, T[38]);
+ b = HH(b, c, d, a, M_offset_10, 23, T[39]);
+ a = HH(a, b, c, d, M_offset_13, 4, T[40]);
+ d = HH(d, a, b, c, M_offset_0, 11, T[41]);
+ c = HH(c, d, a, b, M_offset_3, 16, T[42]);
+ b = HH(b, c, d, a, M_offset_6, 23, T[43]);
+ a = HH(a, b, c, d, M_offset_9, 4, T[44]);
+ d = HH(d, a, b, c, M_offset_12, 11, T[45]);
+ c = HH(c, d, a, b, M_offset_15, 16, T[46]);
+ b = HH(b, c, d, a, M_offset_2, 23, T[47]);
+
+ a = II(a, b, c, d, M_offset_0, 6, T[48]);
+ d = II(d, a, b, c, M_offset_7, 10, T[49]);
+ c = II(c, d, a, b, M_offset_14, 15, T[50]);
+ b = II(b, c, d, a, M_offset_5, 21, T[51]);
+ a = II(a, b, c, d, M_offset_12, 6, T[52]);
+ d = II(d, a, b, c, M_offset_3, 10, T[53]);
+ c = II(c, d, a, b, M_offset_10, 15, T[54]);
+ b = II(b, c, d, a, M_offset_1, 21, T[55]);
+ a = II(a, b, c, d, M_offset_8, 6, T[56]);
+ d = II(d, a, b, c, M_offset_15, 10, T[57]);
+ c = II(c, d, a, b, M_offset_6, 15, T[58]);
+ b = II(b, c, d, a, M_offset_13, 21, T[59]);
+ a = II(a, b, c, d, M_offset_4, 6, T[60]);
+ d = II(d, a, b, c, M_offset_11, 10, T[61]);
+ c = II(c, d, a, b, M_offset_2, 15, T[62]);
+ b = II(b, c, d, a, M_offset_9, 21, T[63]);
+
+ // Intermediate hash value
+ H[0] = (H[0] + a) | 0;
+ H[1] = (H[1] + b) | 0;
+ H[2] = (H[2] + c) | 0;
+ H[3] = (H[3] + d) | 0;
+ },
+
+ _doFinalize: function () {
+ // Shortcuts
+ var data = this._data;
+ var dataWords = data.words;
+
+ var nBitsTotal = this._nDataBytes * 8;
+ var nBitsLeft = data.sigBytes * 8;
+
+ // Add padding
+ dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
+
+ var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000);
+ var nBitsTotalL = nBitsTotal;
+ dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = (
+ (((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
+ (((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00)
+ );
+ dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
+ (((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
+ (((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00)
+ );
+
+ data.sigBytes = (dataWords.length + 1) * 4;
+
+ // Hash final blocks
+ this._process();
+
+ // Shortcuts
+ var hash = this._hash;
+ var H = hash.words;
+
+ // Swap endian
+ for (var i = 0; i < 4; i++) {
+ // Shortcut
+ var H_i = H[i];
+
+ H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
+ (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
+ }
+
+ // Return final computed hash
+ return hash;
+ },
+
+ clone: function () {
+ var clone = Hasher.clone.call(this);
+ clone._hash = this._hash.clone();
+
+ return clone;
+ }
+ });
+
+ function FF(a, b, c, d, x, s, t) {
+ var n = a + ((b & c) | (~b & d)) + x + t;
+ return ((n << s) | (n >>> (32 - s))) + b;
+ }
+
+ function GG(a, b, c, d, x, s, t) {
+ var n = a + ((b & d) | (c & ~d)) + x + t;
+ return ((n << s) | (n >>> (32 - s))) + b;
+ }
+
+ function HH(a, b, c, d, x, s, t) {
+ var n = a + (b ^ c ^ d) + x + t;
+ return ((n << s) | (n >>> (32 - s))) + b;
+ }
+
+ function II(a, b, c, d, x, s, t) {
+ var n = a + (c ^ (b | ~d)) + x + t;
+ return ((n << s) | (n >>> (32 - s))) + b;
+ }
+
+ /**
+ * Shortcut function to the hasher's object interface.
+ *
+ * @param {WordArray|string} message The message to hash.
+ *
+ * @return {WordArray} The hash.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var hash = CryptoJS.MD5('message');
+ * var hash = CryptoJS.MD5(wordArray);
+ */
+ C.MD5 = Hasher._createHelper(MD5);
+
+ /**
+ * Shortcut function to the HMAC's object interface.
+ *
+ * @param {WordArray|string} message The message to hash.
+ * @param {WordArray|string} key The secret key.
+ *
+ * @return {WordArray} The HMAC.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var hmac = CryptoJS.HmacMD5(message, key);
+ */
+ C.HmacMD5 = Hasher._createHmacHelper(MD5);
+}(Math));
+
+(function () {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var Base = C_lib.Base;
+ var WordArray = C_lib.WordArray;
+ var C_algo = C.algo;
+ var MD5 = C_algo.MD5;
+
+ /**
+ * This key derivation function is meant to conform with EVP_BytesToKey.
+ * www.openssl.org/docs/crypto/EVP_BytesToKey.html
+ */
+ var EvpKDF = C_algo.EvpKDF = Base.extend({
+ /**
+ * Configuration options.
+ *
+ * @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
+ * @property {Hasher} hasher The hash algorithm to use. Default: MD5
+ * @property {number} iterations The number of iterations to perform. Default: 1
+ */
+ cfg: Base.extend({
+ keySize: 128/32,
+ hasher: MD5,
+ iterations: 1
+ }),
+
+ /**
+ * Initializes a newly created key derivation function.
+ *
+ * @param {Object} cfg (Optional) The configuration options to use for the derivation.
+ *
+ * @example
+ *
+ * var kdf = CryptoJS.algo.EvpKDF.create();
+ * var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
+ * var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
+ */
+ init: function (cfg) {
+ this.cfg = this.cfg.extend(cfg);
+ },
+
+ /**
+ * Derives a key from a password.
+ *
+ * @param {WordArray|string} password The password.
+ * @param {WordArray|string} salt A salt.
+ *
+ * @return {WordArray} The derived key.
+ *
+ * @example
+ *
+ * var key = kdf.compute(password, salt);
+ */
+ compute: function (password, salt) {
+ // Shortcut
+ var cfg = this.cfg;
+
+ // Init hasher
+ var hasher = cfg.hasher.create();
+
+ // Initial values
+ var derivedKey = WordArray.create();
+
+ // Shortcuts
+ var derivedKeyWords = derivedKey.words;
+ var keySize = cfg.keySize;
+ var iterations = cfg.iterations;
+
+ // Generate key
+ while (derivedKeyWords.length < keySize) {
+ if (block) {
+ hasher.update(block);
+ }
+ var block = hasher.update(password).finalize(salt);
+ hasher.reset();
+
+ // Iterations
+ for (var i = 1; i < iterations; i++) {
+ block = hasher.finalize(block);
+ hasher.reset();
+ }
+
+ derivedKey.concat(block);
+ }
+ derivedKey.sigBytes = keySize * 4;
+
+ return derivedKey;
+ }
+ });
+
+ /**
+ * Derives a key from a password.
+ *
+ * @param {WordArray|string} password The password.
+ * @param {WordArray|string} salt A salt.
+ * @param {Object} cfg (Optional) The configuration options to use for this computation.
+ *
+ * @return {WordArray} The derived key.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var key = CryptoJS.EvpKDF(password, salt);
+ * var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
+ * var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
+ */
+ C.EvpKDF = function (password, salt, cfg) {
+ return EvpKDF.create(cfg).compute(password, salt);
+ };
+}());
+
+/**
+ * Cipher core components.
+ */
+CryptoJS.lib.Cipher || (function (undefined) {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var Base = C_lib.Base;
+ var WordArray = C_lib.WordArray;
+ var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
+ var C_enc = C.enc;
+ var Utf8 = C_enc.Utf8;
+ var Base64 = C_enc.Base64;
+ var C_algo = C.algo;
+ var EvpKDF = C_algo.EvpKDF;
+
+ /**
+ * Abstract base cipher template.
+ *
+ * @property {number} keySize This cipher's key size. Default: 4 (128 bits)
+ * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
+ * @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
+ * @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
+ */
+ var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
+ /**
+ * Configuration options.
+ *
+ * @property {WordArray} iv The IV to use for this operation.
+ */
+ cfg: Base.extend(),
+
+ /**
+ * Creates this cipher in encryption mode.
+ *
+ * @param {WordArray} key The key.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @return {Cipher} A cipher instance.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
+ */
+ createEncryptor: function (key, cfg) {
+ return this.create(this._ENC_XFORM_MODE, key, cfg);
+ },
+
+ /**
+ * Creates this cipher in decryption mode.
+ *
+ * @param {WordArray} key The key.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @return {Cipher} A cipher instance.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
+ */
+ createDecryptor: function (key, cfg) {
+ return this.create(this._DEC_XFORM_MODE, key, cfg);
+ },
+
+ /**
+ * Initializes a newly created cipher.
+ *
+ * @param {number} xformMode Either the encryption or decryption transormation mode constant.
+ * @param {WordArray} key The key.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @example
+ *
+ * var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
+ */
+ init: function (xformMode, key, cfg) {
+ // Apply config defaults
+ this.cfg = this.cfg.extend(cfg);
+
+ // Store transform mode and key
+ this._xformMode = xformMode;
+ this._key = key;
+
+ // Set initial values
+ this.reset();
+ },
+
+ /**
+ * Resets this cipher to its initial state.
+ *
+ * @example
+ *
+ * cipher.reset();
+ */
+ reset: function () {
+ // Reset data buffer
+ BufferedBlockAlgorithm.reset.call(this);
+
+ // Perform concrete-cipher logic
+ this._doReset();
+ },
+
+ /**
+ * Adds data to be encrypted or decrypted.
+ *
+ * @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
+ *
+ * @return {WordArray} The data after processing.
+ *
+ * @example
+ *
+ * var encrypted = cipher.process('data');
+ * var encrypted = cipher.process(wordArray);
+ */
+ process: function (dataUpdate) {
+ // Append
+ this._append(dataUpdate);
+
+ // Process available blocks
+ return this._process();
+ },
+
+ /**
+ * Finalizes the encryption or decryption process.
+ * Note that the finalize operation is effectively a destructive, read-once operation.
+ *
+ * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
+ *
+ * @return {WordArray} The data after final processing.
+ *
+ * @example
+ *
+ * var encrypted = cipher.finalize();
+ * var encrypted = cipher.finalize('data');
+ * var encrypted = cipher.finalize(wordArray);
+ */
+ finalize: function (dataUpdate) {
+ // Final data update
+ if (dataUpdate) {
+ this._append(dataUpdate);
+ }
+
+ // Perform concrete-cipher logic
+ var finalProcessedData = this._doFinalize();
+
+ return finalProcessedData;
+ },
+
+ keySize: 128/32,
+
+ ivSize: 128/32,
+
+ _ENC_XFORM_MODE: 1,
+
+ _DEC_XFORM_MODE: 2,
+
+ /**
+ * Creates shortcut functions to a cipher's object interface.
+ *
+ * @param {Cipher} cipher The cipher to create a helper for.
+ *
+ * @return {Object} An object with encrypt and decrypt shortcut functions.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
+ */
+ _createHelper: (function () {
+ function selectCipherStrategy(key) {
+ if (typeof key == 'string') {
+ return PasswordBasedCipher;
+ } else {
+ return SerializableCipher;
+ }
+ }
+
+ return function (cipher) {
+ return {
+ encrypt: function (message, key, cfg) {
+ return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
+ },
+
+ decrypt: function (ciphertext, key, cfg) {
+ return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
+ }
+ };
+ };
+ }())
+ });
+
+ /**
+ * Abstract base stream cipher template.
+ *
+ * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
+ */
+ var StreamCipher = C_lib.StreamCipher = Cipher.extend({
+ _doFinalize: function () {
+ // Process partial blocks
+ var finalProcessedBlocks = this._process(!!'flush');
+
+ return finalProcessedBlocks;
+ },
+
+ blockSize: 1
+ });
+
+ /**
+ * Mode namespace.
+ */
+ var C_mode = C.mode = {};
+
+ /**
+ * Abstract base block cipher mode template.
+ */
+ var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
+ /**
+ * Creates this mode for encryption.
+ *
+ * @param {Cipher} cipher A block cipher instance.
+ * @param {Array} iv The IV words.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
+ */
+ createEncryptor: function (cipher, iv) {
+ return this.Encryptor.create(cipher, iv);
+ },
+
+ /**
+ * Creates this mode for decryption.
+ *
+ * @param {Cipher} cipher A block cipher instance.
+ * @param {Array} iv The IV words.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
+ */
+ createDecryptor: function (cipher, iv) {
+ return this.Decryptor.create(cipher, iv);
+ },
+
+ /**
+ * Initializes a newly created mode.
+ *
+ * @param {Cipher} cipher A block cipher instance.
+ * @param {Array} iv The IV words.
+ *
+ * @example
+ *
+ * var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
+ */
+ init: function (cipher, iv) {
+ this._cipher = cipher;
+ this._iv = iv;
+ }
+ });
+
+ /**
+ * Cipher Block Chaining mode.
+ */
+ var CBC = C_mode.CBC = (function () {
+ /**
+ * Abstract base CBC mode.
+ */
+ var CBC = BlockCipherMode.extend();
+
+ /**
+ * CBC encryptor.
+ */
+ CBC.Encryptor = CBC.extend({
+ /**
+ * Processes the data block at offset.
+ *
+ * @param {Array} words The data words to operate on.
+ * @param {number} offset The offset where the block starts.
+ *
+ * @example
+ *
+ * mode.processBlock(data.words, offset);
+ */
+ processBlock: function (words, offset) {
+ // Shortcuts
+ var cipher = this._cipher;
+ var blockSize = cipher.blockSize;
+
+ // XOR and encrypt
+ xorBlock.call(this, words, offset, blockSize);
+ cipher.encryptBlock(words, offset);
+
+ // Remember this block to use with next block
+ this._prevBlock = words.slice(offset, offset + blockSize);
+ }
+ });
+
+ /**
+ * CBC decryptor.
+ */
+ CBC.Decryptor = CBC.extend({
+ /**
+ * Processes the data block at offset.
+ *
+ * @param {Array} words The data words to operate on.
+ * @param {number} offset The offset where the block starts.
+ *
+ * @example
+ *
+ * mode.processBlock(data.words, offset);
+ */
+ processBlock: function (words, offset) {
+ // Shortcuts
+ var cipher = this._cipher;
+ var blockSize = cipher.blockSize;
+
+ // Remember this block to use with next block
+ var thisBlock = words.slice(offset, offset + blockSize);
+
+ // Decrypt and XOR
+ cipher.decryptBlock(words, offset);
+ xorBlock.call(this, words, offset, blockSize);
+
+ // This block becomes the previous block
+ this._prevBlock = thisBlock;
+ }
+ });
+
+ function xorBlock(words, offset, blockSize) {
+ // Shortcut
+ var iv = this._iv;
+
+ // Choose mixing block
+ if (iv) {
+ var block = iv;
+
+ // Remove IV for subsequent blocks
+ this._iv = undefined;
+ } else {
+ var block = this._prevBlock;
+ }
+
+ // XOR blocks
+ for (var i = 0; i < blockSize; i++) {
+ words[offset + i] ^= block[i];
+ }
+ }
+
+ return CBC;
+ }());
+
+ /**
+ * Padding namespace.
+ */
+ var C_pad = C.pad = {};
+
+ /**
+ * PKCS #5/7 padding strategy.
+ */
+ var Pkcs7 = C_pad.Pkcs7 = {
+ /**
+ * Pads data using the algorithm defined in PKCS #5/7.
+ *
+ * @param {WordArray} data The data to pad.
+ * @param {number} blockSize The multiple that the data should be padded to.
+ *
+ * @static
+ *
+ * @example
+ *
+ * CryptoJS.pad.Pkcs7.pad(wordArray, 4);
+ */
+ pad: function (data, blockSize) {
+ // Shortcut
+ var blockSizeBytes = blockSize * 4;
+
+ // Count padding bytes
+ var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
+
+ // Create padding word
+ var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
+
+ // Create padding
+ var paddingWords = [];
+ for (var i = 0; i < nPaddingBytes; i += 4) {
+ paddingWords.push(paddingWord);
+ }
+ var padding = WordArray.create(paddingWords, nPaddingBytes);
+
+ // Add padding
+ data.concat(padding);
+ },
+
+ /**
+ * Unpads data that had been padded using the algorithm defined in PKCS #5/7.
+ *
+ * @param {WordArray} data The data to unpad.
+ *
+ * @static
+ *
+ * @example
+ *
+ * CryptoJS.pad.Pkcs7.unpad(wordArray);
+ */
+ unpad: function (data) {
+ // Get number of padding bytes from last byte
+ var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
+
+ // Remove padding
+ data.sigBytes -= nPaddingBytes;
+ }
+ };
+
+ /**
+ * Abstract base block cipher template.
+ *
+ * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
+ */
+ var BlockCipher = C_lib.BlockCipher = Cipher.extend({
+ /**
+ * Configuration options.
+ *
+ * @property {Mode} mode The block mode to use. Default: CBC
+ * @property {Padding} padding The padding strategy to use. Default: Pkcs7
+ */
+ cfg: Cipher.cfg.extend({
+ mode: CBC,
+ padding: Pkcs7
+ }),
+
+ reset: function () {
+ // Reset cipher
+ Cipher.reset.call(this);
+
+ // Shortcuts
+ var cfg = this.cfg;
+ var iv = cfg.iv;
+ var mode = cfg.mode;
+
+ // Reset block mode
+ if (this._xformMode == this._ENC_XFORM_MODE) {
+ var modeCreator = mode.createEncryptor;
+ } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
+ var modeCreator = mode.createDecryptor;
+
+ // Keep at least one block in the buffer for unpadding
+ this._minBufferSize = 1;
+ }
+ this._mode = modeCreator.call(mode, this, iv && iv.words);
+ },
+
+ _doProcessBlock: function (words, offset) {
+ this._mode.processBlock(words, offset);
+ },
+
+ _doFinalize: function () {
+ // Shortcut
+ var padding = this.cfg.padding;
+
+ // Finalize
+ if (this._xformMode == this._ENC_XFORM_MODE) {
+ // Pad data
+ padding.pad(this._data, this.blockSize);
+
+ // Process final blocks
+ var finalProcessedBlocks = this._process(!!'flush');
+ } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
+ // Process final blocks
+ var finalProcessedBlocks = this._process(!!'flush');
+
+ // Unpad data
+ padding.unpad(finalProcessedBlocks);
+ }
+
+ return finalProcessedBlocks;
+ },
+
+ blockSize: 128/32
+ });
+
+ /**
+ * A collection of cipher parameters.
+ *
+ * @property {WordArray} ciphertext The raw ciphertext.
+ * @property {WordArray} key The key to this ciphertext.
+ * @property {WordArray} iv The IV used in the ciphering operation.
+ * @property {WordArray} salt The salt used with a key derivation function.
+ * @property {Cipher} algorithm The cipher algorithm.
+ * @property {Mode} mode The block mode used in the ciphering operation.
+ * @property {Padding} padding The padding scheme used in the ciphering operation.
+ * @property {number} blockSize The block size of the cipher.
+ * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
+ */
+ var CipherParams = C_lib.CipherParams = Base.extend({
+ /**
+ * Initializes a newly created cipher params object.
+ *
+ * @param {Object} cipherParams An object with any of the possible cipher parameters.
+ *
+ * @example
+ *
+ * var cipherParams = CryptoJS.lib.CipherParams.create({
+ * ciphertext: ciphertextWordArray,
+ * key: keyWordArray,
+ * iv: ivWordArray,
+ * salt: saltWordArray,
+ * algorithm: CryptoJS.algo.AES,
+ * mode: CryptoJS.mode.CBC,
+ * padding: CryptoJS.pad.PKCS7,
+ * blockSize: 4,
+ * formatter: CryptoJS.format.OpenSSL
+ * });
+ */
+ init: function (cipherParams) {
+ this.mixIn(cipherParams);
+ },
+
+ /**
+ * Converts this cipher params object to a string.
+ *
+ * @param {Format} formatter (Optional) The formatting strategy to use.
+ *
+ * @return {string} The stringified cipher params.
+ *
+ * @throws Error If neither the formatter nor the default formatter is set.
+ *
+ * @example
+ *
+ * var string = cipherParams + '';
+ * var string = cipherParams.toString();
+ * var string = cipherParams.toString(CryptoJS.format.OpenSSL);
+ */
+ toString: function (formatter) {
+ return (formatter || this.formatter).stringify(this);
+ }
+ });
+
+ /**
+ * Format namespace.
+ */
+ var C_format = C.format = {};
+
+ /**
+ * OpenSSL formatting strategy.
+ */
+ var OpenSSLFormatter = C_format.OpenSSL = {
+ /**
+ * Converts a cipher params object to an OpenSSL-compatible string.
+ *
+ * @param {CipherParams} cipherParams The cipher params object.
+ *
+ * @return {string} The OpenSSL-compatible string.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
+ */
+ stringify: function (cipherParams) {
+ // Shortcuts
+ var ciphertext = cipherParams.ciphertext;
+ var salt = cipherParams.salt;
+
+ // Format
+ if (salt) {
+ var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
+ } else {
+ var wordArray = ciphertext;
+ }
+
+ return wordArray.toString(Base64);
+ },
+
+ /**
+ * Converts an OpenSSL-compatible string to a cipher params object.
+ *
+ * @param {string} openSSLStr The OpenSSL-compatible string.
+ *
+ * @return {CipherParams} The cipher params object.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
+ */
+ parse: function (openSSLStr) {
+ // Parse base64
+ var ciphertext = Base64.parse(openSSLStr);
+
+ // Shortcut
+ var ciphertextWords = ciphertext.words;
+
+ // Test for salt
+ if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
+ // Extract salt
+ var salt = WordArray.create(ciphertextWords.slice(2, 4));
+
+ // Remove salt from ciphertext
+ ciphertextWords.splice(0, 4);
+ ciphertext.sigBytes -= 16;
+ }
+
+ return CipherParams.create({ ciphertext: ciphertext, salt: salt });
+ }
+ };
+
+ /**
+ * A cipher wrapper that returns ciphertext as a serializable cipher params object.
+ */
+ var SerializableCipher = C_lib.SerializableCipher = Base.extend({
+ /**
+ * Configuration options.
+ *
+ * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
+ */
+ cfg: Base.extend({
+ format: OpenSSLFormatter
+ }),
+
+ /**
+ * Encrypts a message.
+ *
+ * @param {Cipher} cipher The cipher algorithm to use.
+ * @param {WordArray|string} message The message to encrypt.
+ * @param {WordArray} key The key.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @return {CipherParams} A cipher params object.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
+ * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
+ * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
+ */
+ encrypt: function (cipher, message, key, cfg) {
+ // Apply config defaults
+ cfg = this.cfg.extend(cfg);
+
+ // Encrypt
+ var encryptor = cipher.createEncryptor(key, cfg);
+ var ciphertext = encryptor.finalize(message);
+
+ // Shortcut
+ var cipherCfg = encryptor.cfg;
+
+ // Create and return serializable cipher params
+ return CipherParams.create({
+ ciphertext: ciphertext,
+ key: key,
+ iv: cipherCfg.iv,
+ algorithm: cipher,
+ mode: cipherCfg.mode,
+ padding: cipherCfg.padding,
+ blockSize: cipher.blockSize,
+ formatter: cfg.format
+ });
+ },
+
+ /**
+ * Decrypts serialized ciphertext.
+ *
+ * @param {Cipher} cipher The cipher algorithm to use.
+ * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
+ * @param {WordArray} key The key.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @return {WordArray} The plaintext.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
+ * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
+ */
+ decrypt: function (cipher, ciphertext, key, cfg) {
+ // Apply config defaults
+ cfg = this.cfg.extend(cfg);
+
+ // Convert string to CipherParams
+ ciphertext = this._parse(ciphertext, cfg.format);
+
+ // Decrypt
+ var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
+
+ return plaintext;
+ },
+
+ /**
+ * Converts serialized ciphertext to CipherParams,
+ * else assumed CipherParams already and returns ciphertext unchanged.
+ *
+ * @param {CipherParams|string} ciphertext The ciphertext.
+ * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
+ *
+ * @return {CipherParams} The unserialized ciphertext.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
+ */
+ _parse: function (ciphertext, format) {
+ if (typeof ciphertext == 'string') {
+ return format.parse(ciphertext, this);
+ } else {
+ return ciphertext;
+ }
+ }
+ });
+
+ /**
+ * Key derivation function namespace.
+ */
+ var C_kdf = C.kdf = {};
+
+ /**
+ * OpenSSL key derivation function.
+ */
+ var OpenSSLKdf = C_kdf.OpenSSL = {
+ /**
+ * Derives a key and IV from a password.
+ *
+ * @param {string} password The password to derive from.
+ * @param {number} keySize The size in words of the key to generate.
+ * @param {number} ivSize The size in words of the IV to generate.
+ * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
+ *
+ * @return {CipherParams} A cipher params object with the key, IV, and salt.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
+ * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
+ */
+ execute: function (password, keySize, ivSize, salt) {
+ // Generate random salt
+ if (!salt) {
+ salt = WordArray.random(64/8);
+ }
+
+ // Derive key and IV
+ var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
+
+ // Separate key and IV
+ var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
+ key.sigBytes = keySize * 4;
+
+ // Return params
+ return CipherParams.create({ key: key, iv: iv, salt: salt });
+ }
+ };
+
+ /**
+ * A serializable cipher wrapper that derives the key from a password,
+ * and returns ciphertext as a serializable cipher params object.
+ */
+ var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
+ /**
+ * Configuration options.
+ *
+ * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
+ */
+ cfg: SerializableCipher.cfg.extend({
+ kdf: OpenSSLKdf
+ }),
+
+ /**
+ * Encrypts a message using a password.
+ *
+ * @param {Cipher} cipher The cipher algorithm to use.
+ * @param {WordArray|string} message The message to encrypt.
+ * @param {string} password The password.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @return {CipherParams} A cipher params object.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
+ * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
+ */
+ encrypt: function (cipher, message, password, cfg) {
+ // Apply config defaults
+ cfg = this.cfg.extend(cfg);
+
+ // Derive key and other params
+ var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
+
+ // Add IV to config
+ cfg.iv = derivedParams.iv;
+
+ // Encrypt
+ var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
+
+ // Mix in derived params
+ ciphertext.mixIn(derivedParams);
+
+ return ciphertext;
+ },
+
+ /**
+ * Decrypts serialized ciphertext using a password.
+ *
+ * @param {Cipher} cipher The cipher algorithm to use.
+ * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
+ * @param {string} password The password.
+ * @param {Object} cfg (Optional) The configuration options to use for this operation.
+ *
+ * @return {WordArray} The plaintext.
+ *
+ * @static
+ *
+ * @example
+ *
+ * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
+ * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
+ */
+ decrypt: function (cipher, ciphertext, password, cfg) {
+ // Apply config defaults
+ cfg = this.cfg.extend(cfg);
+
+ // Convert string to CipherParams
+ ciphertext = this._parse(ciphertext, cfg.format);
+
+ // Derive key and other params
+ var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
+
+ // Add IV to config
+ cfg.iv = derivedParams.iv;
+
+ // Decrypt
+ var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
+
+ return plaintext;
+ }
+ });
+}());
+
+(function () {
+ // Shortcuts
+ var C = CryptoJS;
+ var C_lib = C.lib;
+ var BlockCipher = C_lib.BlockCipher;
+ var C_algo = C.algo;
+
+ // Lookup tables
+ var SBOX = [];
+ var INV_SBOX = [];
+ var SUB_MIX_0 = [];
+ var SUB_MIX_1 = [];
+ var SUB_MIX_2 = [];
+ var SUB_MIX_3 = [];
+ var INV_SUB_MIX_0 = [];
+ var INV_SUB_MIX_1 = [];
+ var INV_SUB_MIX_2 = [];
+ var INV_SUB_MIX_3 = [];
+
+ // Compute lookup tables
+ (function () {
+ // Compute double table
+ var d = [];
+ for (var i = 0; i < 256; i++) {
+ if (i < 128) {
+ d[i] = i << 1;
+ } else {
+ d[i] = (i << 1) ^ 0x11b;
+ }
+ }
+
+ // Walk GF(2^8)
+ var x = 0;
+ var xi = 0;
+ for (var i = 0; i < 256; i++) {
+ // Compute sbox
+ var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
+ sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
+ SBOX[x] = sx;
+ INV_SBOX[sx] = x;
+
+ // Compute multiplication
+ var x2 = d[x];
+ var x4 = d[x2];
+ var x8 = d[x4];
+
+ // Compute sub bytes, mix columns tables
+ var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
+ SUB_MIX_0[x] = (t << 24) | (t >>> 8);
+ SUB_MIX_1[x] = (t << 16) | (t >>> 16);
+ SUB_MIX_2[x] = (t << 8) | (t >>> 24);
+ SUB_MIX_3[x] = t;
+
+ // Compute inv sub bytes, inv mix columns tables
+ var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
+ INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
+ INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
+ INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
+ INV_SUB_MIX_3[sx] = t;
+
+ // Compute next counter
+ if (!x) {
+ x = xi = 1;
+ } else {
+ x = x2 ^ d[d[d[x8 ^ x2]]];
+ xi ^= d[d[xi]];
+ }
+ }
+ }());
+
+ // Precomputed Rcon lookup
+ var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
+
+ /**
+ * AES block cipher algorithm.
+ */
+ var AES = C_algo.AES = BlockCipher.extend({
+ _doReset: function () {
+ // Shortcuts
+ var key = this._key;
+ var keyWords = key.words;
+ var keySize = key.sigBytes / 4;
+
+ // Compute number of rounds
+ var nRounds = this._nRounds = keySize + 6
+
+ // Compute number of key schedule rows
+ var ksRows = (nRounds + 1) * 4;
+
+ // Compute key schedule
+ var keySchedule = this._keySchedule = [];
+ for (var ksRow = 0; ksRow < ksRows; ksRow++) {
+ if (ksRow < keySize) {
+ keySchedule[ksRow] = keyWords[ksRow];
+ } else {
+ var t = keySchedule[ksRow - 1];
+
+ if (!(ksRow % keySize)) {
+ // Rot word
+ t = (t << 8) | (t >>> 24);
+
+ // Sub word
+ t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
+
+ // Mix Rcon
+ t ^= RCON[(ksRow / keySize) | 0] << 24;
+ } else if (keySize > 6 && ksRow % keySize == 4) {
+ // Sub word
+ t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
+ }
+
+ keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
+ }
+ }
+
+ // Compute inv key schedule
+ var invKeySchedule = this._invKeySchedule = [];
+ for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
+ var ksRow = ksRows - invKsRow;
+
+ if (invKsRow % 4) {
+ var t = keySchedule[ksRow];
+ } else {
+ var t = keySchedule[ksRow - 4];
+ }
+
+ if (invKsRow < 4 || ksRow <= 4) {
+ invKeySchedule[invKsRow] = t;
+ } else {
+ invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
+ INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
+ }
+ }
+ },
+
+ encryptBlock: function (M, offset) {
+ this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
+ },
+
+ decryptBlock: function (M, offset) {
+ // Swap 2nd and 4th rows
+ var t = M[offset + 1];
+ M[offset + 1] = M[offset + 3];
+ M[offset + 3] = t;
+
+ this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
+
+ // Inv swap 2nd and 4th rows
+ var t = M[offset + 1];
+ M[offset + 1] = M[offset + 3];
+ M[offset + 3] = t;
+ },
+
+ _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
+ // Shortcut
+ var nRounds = this._nRounds;
+
+ // Get input, add round key
+ var s0 = M[offset] ^ keySchedule[0];
+ var s1 = M[offset + 1] ^ keySchedule[1];
+ var s2 = M[offset + 2] ^ keySchedule[2];
+ var s3 = M[offset + 3] ^ keySchedule[3];
+
+ // Key schedule row counter
+ var ksRow = 4;
+
+ // Rounds
+ for (var round = 1; round < nRounds; round++) {
+ // Shift rows, sub bytes, mix columns, add round key
+ var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
+ var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
+ var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
+ var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
+
+ // Update state
+ s0 = t0;
+ s1 = t1;
+ s2 = t2;
+ s3 = t3;
+ }
+
+ // Shift rows, sub bytes, add round key
+ var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
+ var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
+ var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
+ var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
+
+ // Set output
+ M[offset] = t0;
+ M[offset + 1] = t1;
+ M[offset + 2] = t2;
+ M[offset + 3] = t3;
+ },
+
+ keySize: 256/32
+ });
+
+ /**
+ * Shortcut functions to the cipher's object interface.
+ *
+ * @example
+ *
+ * var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
+ * var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
+ */
+ C.AES = BlockCipher._createHelper(AES);
+}());
+
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -13,11 +2559,11 @@
* along with this program. If not, see .
*/
-'use strict';
;(function() {
+ 'use strict';
// Test for webcrypto support, polyfill if needed.
if (window.crypto.subtle === undefined || window.crypto.subtle === null) {
- window.crypto.subtle = (function() {
+ window.crypto.subtle = (function () {
var StaticArrayBufferProto = new ArrayBuffer().__proto__;
function assertIsArrayBuffer(thing) {
if (thing !== Object(thing) || thing.__proto__ != StaticArrayBufferProto)
@@ -90,3 +2636,5 @@
})();
} // if !window.crypto.subtle
})();
+
+})();
\ No newline at end of file
diff --git a/options.html b/options.html
index 34f6820c..30f8d307 100644
--- a/options.html
+++ b/options.html
@@ -91,7 +91,6 @@
-
diff --git a/test/index.html b/test/index.html
index 77190804..45e542f9 100644
--- a/test/index.html
+++ b/test/index.html
@@ -123,7 +123,6 @@
-