>(p+=this.DB-k);
}
else {
d = (this[i]>>(p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return (this.s<0)?-r:r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<= 0; --i) {
r[i+ds+1] = (this[i]>>cbs)|c;
c = (this[i]&bm)<= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<>bs;
for(var i = ds+1; i < this.t; ++i) {
r[i-ds-1] |= (this[i]&bm)<>bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c -= a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r[i++] = this.DV+c;
else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(1<1)?y[ys-2]>>this.F2:0);
var d1 = this.FV/yt, d2 = (1<= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1< 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// jsbn2 stuff
// (protected) convert from radix string
function bnpFromRadix(s,b) {
this.fromInt(0);
if(b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
for(var i = 0; i < s.length; ++i) {
var x = intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b*w+x;
if(++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w,0);
j = 0;
w = 0;
}
}
if(j > 0) {
this.dMultiply(Math.pow(b,j));
this.dAddOffset(w,0);
}
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if(this.s < 0) return -1;
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0,n-1,this,0,0,this.t);
++this.t;
this.clamp();
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n,w) {
if(n == 0) return;
while(this.t <= w) this[this.t++] = 0;
this[w] += n;
while(this[w] >= this.DV) {
this[w] -= this.DV;
if(++w >= this.t) this[this.t++] = 0;
++this[w];
}
}
// (protected) convert to radix string
function bnpToRadix(b) {
if(b == null) b = 10;
if(this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b,cs);
var d = nbv(a), y = nbi(), z = nbi(), r = "";
this.divRemTo(d,y,z);
while(y.signum() > 0) {
r = (a+z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d,y,z);
}
return z.intValue().toString(b) + r;
}
// (public) return value as integer
function bnIntValue() {
if(this.s < 0) {
if(this.t == 1) return this[0]-this.DV;
else if(this.t == 0) return -1;
}
else if(this.t == 1) return this[0];
else if(this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1]&((1<<(32-this.DB))-1))<>= this.DB;
}
if(a.t < this.t) {
c += a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c += a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c<0)?-1:0;
if(c > 0) r[i++] = c;
else if(c < -1) r[i++] = this.DV+c;
r.t = i;
r.clamp();
}
BigInteger.prototype.fromRadix = bnpFromRadix;
BigInteger.prototype.chunkSize = bnpChunkSize;
BigInteger.prototype.signum = bnSigNum;
BigInteger.prototype.dMultiply = bnpDMultiply;
BigInteger.prototype.dAddOffset = bnpDAddOffset;
BigInteger.prototype.toRadix = bnpToRadix;
BigInteger.prototype.intValue = bnIntValue;
BigInteger.prototype.addTo = bnpAddTo;
//======= end jsbn =======
// Emscripten wrapper
var Wrapper = {
abs: function(l, h) {
var x = new goog.math.Long(l, h);
var ret;
if (x.isNegative()) {
ret = x.negate();
} else {
ret = x;
}
HEAP32[tempDoublePtr>>2] = ret.low_;
HEAP32[tempDoublePtr+4>>2] = ret.high_;
},
ensureTemps: function() {
if (Wrapper.ensuredTemps) return;
Wrapper.ensuredTemps = true;
Wrapper.two32 = new BigInteger();
Wrapper.two32.fromString('4294967296', 10);
Wrapper.two64 = new BigInteger();
Wrapper.two64.fromString('18446744073709551616', 10);
Wrapper.temp1 = new BigInteger();
Wrapper.temp2 = new BigInteger();
},
lh2bignum: function(l, h) {
var a = new BigInteger();
a.fromString(h.toString(), 10);
var b = new BigInteger();
a.multiplyTo(Wrapper.two32, b);
var c = new BigInteger();
c.fromString(l.toString(), 10);
var d = new BigInteger();
c.addTo(b, d);
return d;
},
stringify: function(l, h, unsigned) {
var ret = new goog.math.Long(l, h).toString();
if (unsigned && ret[0] == '-') {
// unsign slowly using jsbn bignums
Wrapper.ensureTemps();
var bignum = new BigInteger();
bignum.fromString(ret, 10);
ret = new BigInteger();
Wrapper.two64.addTo(bignum, ret);
ret = ret.toString(10);
}
return ret;
},
fromString: function(str, base, min, max, unsigned) {
Wrapper.ensureTemps();
var bignum = new BigInteger();
bignum.fromString(str, base);
var bigmin = new BigInteger();
bigmin.fromString(min, 10);
var bigmax = new BigInteger();
bigmax.fromString(max, 10);
if (unsigned && bignum.compareTo(BigInteger.ZERO) < 0) {
var temp = new BigInteger();
bignum.addTo(Wrapper.two64, temp);
bignum = temp;
}
var error = false;
if (bignum.compareTo(bigmin) < 0) {
bignum = bigmin;
error = true;
} else if (bignum.compareTo(bigmax) > 0) {
bignum = bigmax;
error = true;
}
var ret = goog.math.Long.fromString(bignum.toString()); // min-max checks should have clamped this to a range goog.math.Long can handle well
HEAP32[tempDoublePtr>>2] = ret.low_;
HEAP32[tempDoublePtr+4>>2] = ret.high_;
if (error) throw 'range error';
}
};
return Wrapper;
})();
//======= end closure i64 code =======
// === Auto-generated postamble setup entry stuff ===
if (memoryInitializer) {
if (typeof Module['locateFile'] === 'function') {
memoryInitializer = Module['locateFile'](memoryInitializer);
} else if (Module['memoryInitializerPrefixURL']) {
memoryInitializer = Module['memoryInitializerPrefixURL'] + memoryInitializer;
}
if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) {
var data = Module['readBinary'](memoryInitializer);
HEAPU8.set(data, STATIC_BASE);
} else {
addRunDependency('memory initializer');
Browser.asyncLoad(memoryInitializer, function(data) {
HEAPU8.set(data, STATIC_BASE);
removeRunDependency('memory initializer');
}, function(data) {
throw 'could not load memory initializer ' + memoryInitializer;
});
}
}
function ExitStatus(status) {
this.name = "ExitStatus";
this.message = "Program terminated with exit(" + status + ")";
this.status = status;
};
ExitStatus.prototype = new Error();
ExitStatus.prototype.constructor = ExitStatus;
var initialStackTop;
var preloadStartTime = null;
var calledMain = false;
dependenciesFulfilled = function runCaller() {
// If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false)
if (!Module['calledRun'] && shouldRunNow) run();
if (!Module['calledRun']) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled
}
Module['callMain'] = Module.callMain = function callMain(args) {
assert(runDependencies == 0, 'cannot call main when async dependencies remain! (listen on __ATMAIN__)');
assert(__ATPRERUN__.length == 0, 'cannot call main when preRun functions remain to be called');
args = args || [];
ensureInitRuntime();
var argc = args.length+1;
function pad() {
for (var i = 0; i < 4-1; i++) {
argv.push(0);
}
}
var argv = [allocate(intArrayFromString(Module['thisProgram']), 'i8', ALLOC_NORMAL) ];
pad();
for (var i = 0; i < argc-1; i = i + 1) {
argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_NORMAL));
pad();
}
argv.push(0);
argv = allocate(argv, 'i32', ALLOC_NORMAL);
initialStackTop = STACKTOP;
try {
var ret = Module['_main'](argc, argv, 0);
// if we're not running an evented main loop, it's time to exit
exit(ret);
}
catch(e) {
if (e instanceof ExitStatus) {
// exit() throws this once it's done to make sure execution
// has been stopped completely
return;
} else if (e == 'SimulateInfiniteLoop') {
// running an evented main loop, don't immediately exit
Module['noExitRuntime'] = true;
return;
} else {
if (e && typeof e === 'object' && e.stack) Module.printErr('exception thrown: ' + [e, e.stack]);
throw e;
}
} finally {
calledMain = true;
}
}
function run(args) {
args = args || Module['arguments'];
if (preloadStartTime === null) preloadStartTime = Date.now();
if (runDependencies > 0) {
return;
}
preRun();
if (runDependencies > 0) return; // a preRun added a dependency, run will be called later
if (Module['calledRun']) return; // run may have just been called through dependencies being fulfilled just in this very frame
function doRun() {
if (Module['calledRun']) return; // run may have just been called while the async setStatus time below was happening
Module['calledRun'] = true;
if (ABORT) return;
ensureInitRuntime();
preMain();
if (ENVIRONMENT_IS_WEB && preloadStartTime !== null) {
Module.printErr('pre-main prep time: ' + (Date.now() - preloadStartTime) + ' ms');
}
if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']();
if (Module['_main'] && shouldRunNow) Module['callMain'](args);
postRun();
}
if (Module['setStatus']) {
Module['setStatus']('Running...');
setTimeout(function() {
setTimeout(function() {
Module['setStatus']('');
}, 1);
doRun();
}, 1);
} else {
doRun();
}
}
Module['run'] = Module.run = run;
function exit(status) {
if (Module['noExitRuntime']) {
return;
}
ABORT = true;
EXITSTATUS = status;
STACKTOP = initialStackTop;
// exit the runtime
exitRuntime();
if (ENVIRONMENT_IS_NODE) {
// Work around a node.js bug where stdout buffer is not flushed at process exit:
// Instead of process.exit() directly, wait for stdout flush event.
// See https://github.com/joyent/node/issues/1669 and https://github.com/kripken/emscripten/issues/2582
// Workaround is based on https://github.com/RReverser/acorn/commit/50ab143cecc9ed71a2d66f78b4aec3bb2e9844f6
process['stdout']['once']('drain', function () {
process['exit'](status);
});
console.log(' '); // Make sure to print something to force the drain event to occur, in case the stdout buffer was empty.
// Work around another node bug where sometimes 'drain' is never fired - make another effort
// to emit the exit status, after a significant delay (if node hasn't fired drain by then, give up)
setTimeout(function() {
process['exit'](status);
}, 500);
} else
if (ENVIRONMENT_IS_SHELL && typeof quit === 'function') {
quit(status);
}
// if we reach here, we must throw an exception to halt the current execution
throw new ExitStatus(status);
}
Module['exit'] = Module.exit = exit;
function abort(text) {
if (text) {
Module.print(text);
Module.printErr(text);
}
ABORT = true;
EXITSTATUS = 1;
var extra = '\nIf this abort() is unexpected, build with -s ASSERTIONS=1 which can give more information.';
throw 'abort() at ' + stackTrace() + extra;
}
Module['abort'] = Module.abort = abort;
// {{PRE_RUN_ADDITIONS}}
if (Module['preInit']) {
if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']];
while (Module['preInit'].length > 0) {
Module['preInit'].pop()();
}
}
// shouldRunNow refers to calling main(), not run().
var shouldRunNow = true;
if (Module['noInitialRun']) {
shouldRunNow = false;
}
run();
// {{POST_RUN_ADDITIONS}}
// {{MODULE_ADDITIONS}}
/* vim: ts=4:sw=4:expandtab
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
var axolotlInternal = axolotlInternal || {};
axolotlInternal.curve25519 = function() {
'use strict';
// Insert some bytes into the emscripten memory and return a pointer
function _allocate(bytes) {
var address = Module._malloc(bytes.length);
Module.HEAPU8.set(bytes, address);
return address;
}
function _readBytes(address, length, array) {
array.set(Module.HEAPU8.subarray(address, address + length));
}
var basepoint = new Uint8Array(32);
basepoint[0] = 9;
return {
keyPair: function(privKey) {
return new Promise(function(resolve) {
var priv = new Uint8Array(privKey);
priv[0] &= 248;
priv[31] &= 127;
priv[31] |= 64
// Where to store the result
var publicKey_ptr = Module._malloc(32);
// Get a pointer to the private key
var privateKey_ptr = _allocate(priv);
// The basepoint for generating public keys
var basepoint_ptr = _allocate(basepoint);
// The return value is just 0, the operation is done in place
var err = Module._curve25519_donna(publicKey_ptr,
privateKey_ptr,
basepoint_ptr);
var res = new Uint8Array(32);
_readBytes(publicKey_ptr, 32, res);
Module._free(publicKey_ptr);
Module._free(privateKey_ptr);
Module._free(basepoint_ptr);
resolve({ pubKey: res.buffer, privKey: privKey });
});
},
sharedSecret: function(pubKey, privKey) {
// Where to store the result
var sharedKey_ptr = Module._malloc(32);
// Get a pointer to our private key
var privateKey_ptr = _allocate(new Uint8Array(privKey));
// Get a pointer to their public key, the basepoint when you're
// generating a shared secret
var basepoint_ptr = _allocate(new Uint8Array(pubKey));
// Return value is 0 here too of course
var err = Module._curve25519_donna(sharedKey_ptr,
privateKey_ptr,
basepoint_ptr);
var res = new Uint8Array(32);
_readBytes(sharedKey_ptr, 32, res);
Module._free(sharedKey_ptr);
Module._free(privateKey_ptr);
Module._free(basepoint_ptr);
return Promise.resolve(res.buffer);
},
sign: function(privKey, message) {
// Where to store the result
var signature_ptr = Module._malloc(64);
// Get a pointer to our private key
var privateKey_ptr = _allocate(new Uint8Array(privKey));
// Get a pointer to the message
var message_ptr = _allocate(new Uint8Array(message));
var err = Module._curve25519_sign(signature_ptr,
privateKey_ptr,
message_ptr,
message.byteLength);
var res = new Uint8Array(64);
_readBytes(signature_ptr, 64, res);
Module._free(signature_ptr);
Module._free(privateKey_ptr);
Module._free(message_ptr);
return Promise.resolve(res.buffer);
},
verify: function(pubKey, message, sig) {
// Get a pointer to their public key
var publicKey_ptr = _allocate(new Uint8Array(pubKey));
// Get a pointer to the signature
var signature_ptr = _allocate(new Uint8Array(sig));
// Get a pointer to the message
var message_ptr = _allocate(new Uint8Array(message));
var res = Module._curve25519_verify(signature_ptr,
publicKey_ptr,
message_ptr,
message.byteLength);
Module._free(publicKey_ptr);
Module._free(signature_ptr);
Module._free(message_ptr);
return new Promise(function(resolve, reject) {
if (res !== 0) {
reject(new Error("Invalid signature"));
} else {
resolve();
}
});
}
};
}();
var axolotlInternal = axolotlInternal || {};
// I am the...workee?
var origCurve25519 = axolotlInternal.curve25519;
axolotlInternal.startWorker = function(url) {
axolotlInternal.stopWorker(); // there can be only one
axolotlInternal.curve25519 = new Curve25519Worker(url);
};
axolotlInternal.stopWorker = function() {
if (axolotlInternal.curve25519 instanceof Curve25519Worker) {
var worker = axolotlInternal.curve25519.worker;
axolotlInternal.curve25519 = origCurve25519;
worker.terminate();
}
};
function Curve25519Worker(url) {
this.jobs = {};
this.jobId = 0;
this.worker = new Worker(url);
this.worker.onmessage = function(e) {
var job = this.jobs[e.data.id];
if (e.data.error && typeof job.onerror === 'function') {
job.onerror(new Error(e.data.error));
} else if (typeof job.onsuccess === 'function') {
job.onsuccess(e.data.result);
}
delete this.jobs[e.data.id];
}.bind(this);
}
Curve25519Worker.prototype = {
constructor: Curve25519Worker,
postMessage: function(methodName, args, onsuccess, onerror) {
return new Promise(function(resolve, reject) {
this.jobs[this.jobId] = { onsuccess: resolve, onerror: reject };
this.worker.postMessage({ id: this.jobId, methodName: methodName, args: args });
this.jobId++;
}.bind(this));
},
keyPair: function(privKey) {
return this.postMessage('keyPair', [privKey]);
},
sharedSecret: function(pubKey, privKey) {
return this.postMessage('sharedSecret', [pubKey, privKey]);
},
sign: function(privKey, message) {
return this.postMessage('sign', [privKey, message]);
},
verify: function(pubKey, message, sig) {
return this.postMessage('verify', [pubKey, message, sig]);
}
};
;(function(){
/**
* CryptoJS core components.
*/
var CryptoJS = CryptoJS || (function (Math, undefined) {
/**
* CryptoJS namespace.
*/
var C = {};
/**
* Library namespace.
*/
var C_lib = C.lib = {};
/**
* Base object for prototypal inheritance.
*/
var Base = C_lib.Base = (function () {
function F() {}
return {
/**
* Creates a new object that inherits from this object.
*
* @param {Object} overrides Properties to copy into the new object.
*
* @return {Object} The new object.
*
* @static
*
* @example
*
* var MyType = CryptoJS.lib.Base.extend({
* field: 'value',
*
* method: function () {
* }
* });
*/
extend: function (overrides) {
// Spawn
F.prototype = this;
var subtype = new F();
// Augment
if (overrides) {
subtype.mixIn(overrides);
}
// Create default initializer
if (!subtype.hasOwnProperty('init')) {
subtype.init = function () {
subtype.$super.init.apply(this, arguments);
};
}
// Initializer's prototype is the subtype object
subtype.init.prototype = subtype;
// Reference supertype
subtype.$super = this;
return subtype;
},
/**
* Extends this object and runs the init method.
* Arguments to create() will be passed to init().
*
* @return {Object} The new object.
*
* @static
*
* @example
*
* var instance = MyType.create();
*/
create: function () {
var instance = this.extend();
instance.init.apply(instance, arguments);
return instance;
},
/**
* Initializes a newly created object.
* Override this method to add some logic when your objects are created.
*
* @example
*
* var MyType = CryptoJS.lib.Base.extend({
* init: function () {
* // ...
* }
* });
*/
init: function () {
},
/**
* Copies properties into this object.
*
* @param {Object} properties The properties to mix in.
*
* @example
*
* MyType.mixIn({
* field: 'value'
* });
*/
mixIn: function (properties) {
for (var propertyName in properties) {
if (properties.hasOwnProperty(propertyName)) {
this[propertyName] = properties[propertyName];
}
}
// IE won't copy toString using the loop above
if (properties.hasOwnProperty('toString')) {
this.toString = properties.toString;
}
},
/**
* Creates a copy of this object.
*
* @return {Object} The clone.
*
* @example
*
* var clone = instance.clone();
*/
clone: function () {
return this.init.prototype.extend(this);
}
};
}());
/**
* An array of 32-bit words.
*
* @property {Array} words The array of 32-bit words.
* @property {number} sigBytes The number of significant bytes in this word array.
*/
var WordArray = C_lib.WordArray = Base.extend({
/**
* Initializes a newly created word array.
*
* @param {Array} words (Optional) An array of 32-bit words.
* @param {number} sigBytes (Optional) The number of significant bytes in the words.
*
* @example
*
* var wordArray = CryptoJS.lib.WordArray.create();
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
*/
init: function (words, sigBytes) {
words = this.words = words || [];
if (sigBytes != undefined) {
this.sigBytes = sigBytes;
} else {
this.sigBytes = words.length * 4;
}
},
/**
* Converts this word array to a string.
*
* @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
*
* @return {string} The stringified word array.
*
* @example
*
* var string = wordArray + '';
* var string = wordArray.toString();
* var string = wordArray.toString(CryptoJS.enc.Utf8);
*/
toString: function (encoder) {
return (encoder || Hex).stringify(this);
},
/**
* Concatenates a word array to this word array.
*
* @param {WordArray} wordArray The word array to append.
*
* @return {WordArray} This word array.
*
* @example
*
* wordArray1.concat(wordArray2);
*/
concat: function (wordArray) {
// Shortcuts
var thisWords = this.words;
var thatWords = wordArray.words;
var thisSigBytes = this.sigBytes;
var thatSigBytes = wordArray.sigBytes;
// Clamp excess bits
this.clamp();
// Concat
if (thisSigBytes % 4) {
// Copy one byte at a time
for (var i = 0; i < thatSigBytes; i++) {
var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
}
} else if (thatWords.length > 0xffff) {
// Copy one word at a time
for (var i = 0; i < thatSigBytes; i += 4) {
thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
}
} else {
// Copy all words at once
thisWords.push.apply(thisWords, thatWords);
}
this.sigBytes += thatSigBytes;
// Chainable
return this;
},
/**
* Removes insignificant bits.
*
* @example
*
* wordArray.clamp();
*/
clamp: function () {
// Shortcuts
var words = this.words;
var sigBytes = this.sigBytes;
// Clamp
words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
words.length = Math.ceil(sigBytes / 4);
},
/**
* Creates a copy of this word array.
*
* @return {WordArray} The clone.
*
* @example
*
* var clone = wordArray.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
clone.words = this.words.slice(0);
return clone;
},
/**
* Creates a word array filled with random bytes.
*
* @param {number} nBytes The number of random bytes to generate.
*
* @return {WordArray} The random word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.lib.WordArray.random(16);
*/
random: function (nBytes) {
var words = [];
for (var i = 0; i < nBytes; i += 4) {
words.push((Math.random() * 0x100000000) | 0);
}
return new WordArray.init(words, nBytes);
}
});
/**
* Encoder namespace.
*/
var C_enc = C.enc = {};
/**
* Hex encoding strategy.
*/
var Hex = C_enc.Hex = {
/**
* Converts a word array to a hex string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The hex string.
*
* @static
*
* @example
*
* var hexString = CryptoJS.enc.Hex.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var hexChars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
hexChars.push((bite >>> 4).toString(16));
hexChars.push((bite & 0x0f).toString(16));
}
return hexChars.join('');
},
/**
* Converts a hex string to a word array.
*
* @param {string} hexStr The hex string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Hex.parse(hexString);
*/
parse: function (hexStr) {
// Shortcut
var hexStrLength = hexStr.length;
// Convert
var words = [];
for (var i = 0; i < hexStrLength; i += 2) {
words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
}
return new WordArray.init(words, hexStrLength / 2);
}
};
/**
* Latin1 encoding strategy.
*/
var Latin1 = C_enc.Latin1 = {
/**
* Converts a word array to a Latin1 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The Latin1 string.
*
* @static
*
* @example
*
* var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var latin1Chars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
latin1Chars.push(String.fromCharCode(bite));
}
return latin1Chars.join('');
},
/**
* Converts a Latin1 string to a word array.
*
* @param {string} latin1Str The Latin1 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
*/
parse: function (latin1Str) {
// Shortcut
var latin1StrLength = latin1Str.length;
// Convert
var words = [];
for (var i = 0; i < latin1StrLength; i++) {
words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
}
return new WordArray.init(words, latin1StrLength);
}
};
/**
* UTF-8 encoding strategy.
*/
var Utf8 = C_enc.Utf8 = {
/**
* Converts a word array to a UTF-8 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The UTF-8 string.
*
* @static
*
* @example
*
* var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
*/
stringify: function (wordArray) {
try {
return decodeURIComponent(escape(Latin1.stringify(wordArray)));
} catch (e) {
throw new Error('Malformed UTF-8 data');
}
},
/**
* Converts a UTF-8 string to a word array.
*
* @param {string} utf8Str The UTF-8 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
*/
parse: function (utf8Str) {
return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
}
};
/**
* Abstract buffered block algorithm template.
*
* The property blockSize must be implemented in a concrete subtype.
*
* @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
*/
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
/**
* Resets this block algorithm's data buffer to its initial state.
*
* @example
*
* bufferedBlockAlgorithm.reset();
*/
reset: function () {
// Initial values
this._data = new WordArray.init();
this._nDataBytes = 0;
},
/**
* Adds new data to this block algorithm's buffer.
*
* @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
*
* @example
*
* bufferedBlockAlgorithm._append('data');
* bufferedBlockAlgorithm._append(wordArray);
*/
_append: function (data) {
// Convert string to WordArray, else assume WordArray already
if (typeof data == 'string') {
data = Utf8.parse(data);
}
// Append
this._data.concat(data);
this._nDataBytes += data.sigBytes;
},
/**
* Processes available data blocks.
*
* This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
*
* @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
*
* @return {WordArray} The processed data.
*
* @example
*
* var processedData = bufferedBlockAlgorithm._process();
* var processedData = bufferedBlockAlgorithm._process(!!'flush');
*/
_process: function (doFlush) {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var dataSigBytes = data.sigBytes;
var blockSize = this.blockSize;
var blockSizeBytes = blockSize * 4;
// Count blocks ready
var nBlocksReady = dataSigBytes / blockSizeBytes;
if (doFlush) {
// Round up to include partial blocks
nBlocksReady = Math.ceil(nBlocksReady);
} else {
// Round down to include only full blocks,
// less the number of blocks that must remain in the buffer
nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
}
// Count words ready
var nWordsReady = nBlocksReady * blockSize;
// Count bytes ready
var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
// Process blocks
if (nWordsReady) {
for (var offset = 0; offset < nWordsReady; offset += blockSize) {
// Perform concrete-algorithm logic
this._doProcessBlock(dataWords, offset);
}
// Remove processed words
var processedWords = dataWords.splice(0, nWordsReady);
data.sigBytes -= nBytesReady;
}
// Return processed words
return new WordArray.init(processedWords, nBytesReady);
},
/**
* Creates a copy of this object.
*
* @return {Object} The clone.
*
* @example
*
* var clone = bufferedBlockAlgorithm.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
clone._data = this._data.clone();
return clone;
},
_minBufferSize: 0
});
/**
* Abstract hasher template.
*
* @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
*/
var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
/**
* Configuration options.
*/
cfg: Base.extend(),
/**
* Initializes a newly created hasher.
*
* @param {Object} cfg (Optional) The configuration options to use for this hash computation.
*
* @example
*
* var hasher = CryptoJS.algo.SHA256.create();
*/
init: function (cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Set initial values
this.reset();
},
/**
* Resets this hasher to its initial state.
*
* @example
*
* hasher.reset();
*/
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-hasher logic
this._doReset();
},
/**
* Updates this hasher with a message.
*
* @param {WordArray|string} messageUpdate The message to append.
*
* @return {Hasher} This hasher.
*
* @example
*
* hasher.update('message');
* hasher.update(wordArray);
*/
update: function (messageUpdate) {
// Append
this._append(messageUpdate);
// Update the hash
this._process();
// Chainable
return this;
},
/**
* Finalizes the hash computation.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} messageUpdate (Optional) A final message update.
*
* @return {WordArray} The hash.
*
* @example
*
* var hash = hasher.finalize();
* var hash = hasher.finalize('message');
* var hash = hasher.finalize(wordArray);
*/
finalize: function (messageUpdate) {
// Final message update
if (messageUpdate) {
this._append(messageUpdate);
}
// Perform concrete-hasher logic
var hash = this._doFinalize();
return hash;
},
blockSize: 512/32,
/**
* Creates a shortcut function to a hasher's object interface.
*
* @param {Hasher} hasher The hasher to create a helper for.
*
* @return {Function} The shortcut function.
*
* @static
*
* @example
*
* var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
*/
_createHelper: function (hasher) {
return function (message, cfg) {
return new hasher.init(cfg).finalize(message);
};
},
/**
* Creates a shortcut function to the HMAC's object interface.
*
* @param {Hasher} hasher The hasher to use in this HMAC helper.
*
* @return {Function} The shortcut function.
*
* @static
*
* @example
*
* var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
*/
_createHmacHelper: function (hasher) {
return function (message, key) {
return new C_algo.HMAC.init(hasher, key).finalize(message);
};
}
});
/**
* Algorithm namespace.
*/
var C_algo = C.algo = {};
return C;
}(Math));
(function (Math) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_algo = C.algo;
// Initialization and round constants tables
var H = [];
var K = [];
// Compute constants
(function () {
function isPrime(n) {
var sqrtN = Math.sqrt(n);
for (var factor = 2; factor <= sqrtN; factor++) {
if (!(n % factor)) {
return false;
}
}
return true;
}
function getFractionalBits(n) {
return ((n - (n | 0)) * 0x100000000) | 0;
}
var n = 2;
var nPrime = 0;
while (nPrime < 64) {
if (isPrime(n)) {
if (nPrime < 8) {
H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
}
K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));
nPrime++;
}
n++;
}
}());
// Reusable object
var W = [];
/**
* SHA-256 hash algorithm.
*/
var SHA256 = C_algo.SHA256 = Hasher.extend({
_doReset: function () {
this._hash = new WordArray.init(H.slice(0));
},
_doProcessBlock: function (M, offset) {
// Shortcut
var H = this._hash.words;
// Working variables
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
var e = H[4];
var f = H[5];
var g = H[6];
var h = H[7];
// Computation
for (var i = 0; i < 64; i++) {
if (i < 16) {
W[i] = M[offset + i] | 0;
} else {
var gamma0x = W[i - 15];
var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^
((gamma0x << 14) | (gamma0x >>> 18)) ^
(gamma0x >>> 3);
var gamma1x = W[i - 2];
var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^
((gamma1x << 13) | (gamma1x >>> 19)) ^
(gamma1x >>> 10);
W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
}
var ch = (e & f) ^ (~e & g);
var maj = (a & b) ^ (a & c) ^ (b & c);
var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25));
var t1 = h + sigma1 + ch + K[i] + W[i];
var t2 = sigma0 + maj;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
// Intermediate hash value
H[0] = (H[0] + a) | 0;
H[1] = (H[1] + b) | 0;
H[2] = (H[2] + c) | 0;
H[3] = (H[3] + d) | 0;
H[4] = (H[4] + e) | 0;
H[5] = (H[5] + f) | 0;
H[6] = (H[6] + g) | 0;
H[7] = (H[7] + h) | 0;
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
data.sigBytes = dataWords.length * 4;
// Hash final blocks
this._process();
// Return final computed hash
return this._hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
}
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA256('message');
* var hash = CryptoJS.SHA256(wordArray);
*/
C.SHA256 = Hasher._createHelper(SHA256);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA256(message, key);
*/
C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
}(Math));
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var C_enc = C.enc;
var Utf8 = C_enc.Utf8;
var C_algo = C.algo;
/**
* HMAC algorithm.
*/
var HMAC = C_algo.HMAC = Base.extend({
/**
* Initializes a newly created HMAC.
*
* @param {Hasher} hasher The hash algorithm to use.
* @param {WordArray|string} key The secret key.
*
* @example
*
* var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
*/
init: function (hasher, key) {
// Init hasher
hasher = this._hasher = new hasher.init();
// Convert string to WordArray, else assume WordArray already
if (typeof key == 'string') {
key = Utf8.parse(key);
}
// Shortcuts
var hasherBlockSize = hasher.blockSize;
var hasherBlockSizeBytes = hasherBlockSize * 4;
// Allow arbitrary length keys
if (key.sigBytes > hasherBlockSizeBytes) {
key = hasher.finalize(key);
}
// Clamp excess bits
key.clamp();
// Clone key for inner and outer pads
var oKey = this._oKey = key.clone();
var iKey = this._iKey = key.clone();
// Shortcuts
var oKeyWords = oKey.words;
var iKeyWords = iKey.words;
// XOR keys with pad constants
for (var i = 0; i < hasherBlockSize; i++) {
oKeyWords[i] ^= 0x5c5c5c5c;
iKeyWords[i] ^= 0x36363636;
}
oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
// Set initial values
this.reset();
},
/**
* Resets this HMAC to its initial state.
*
* @example
*
* hmacHasher.reset();
*/
reset: function () {
// Shortcut
var hasher = this._hasher;
// Reset
hasher.reset();
hasher.update(this._iKey);
},
/**
* Updates this HMAC with a message.
*
* @param {WordArray|string} messageUpdate The message to append.
*
* @return {HMAC} This HMAC instance.
*
* @example
*
* hmacHasher.update('message');
* hmacHasher.update(wordArray);
*/
update: function (messageUpdate) {
this._hasher.update(messageUpdate);
// Chainable
return this;
},
/**
* Finalizes the HMAC computation.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} messageUpdate (Optional) A final message update.
*
* @return {WordArray} The HMAC.
*
* @example
*
* var hmac = hmacHasher.finalize();
* var hmac = hmacHasher.finalize('message');
* var hmac = hmacHasher.finalize(wordArray);
*/
finalize: function (messageUpdate) {
// Shortcut
var hasher = this._hasher;
// Compute HMAC
var innerHash = hasher.finalize(messageUpdate);
hasher.reset();
var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
return hmac;
}
});
}());
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var C_enc = C.enc;
/**
* Base64 encoding strategy.
*/
var Base64 = C_enc.Base64 = {
/**
* Converts a word array to a Base64 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The Base64 string.
*
* @static
*
* @example
*
* var base64String = CryptoJS.enc.Base64.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
var map = this._map;
// Clamp excess bits
wordArray.clamp();
// Convert
var base64Chars = [];
for (var i = 0; i < sigBytes; i += 3) {
var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
}
}
// Add padding
var paddingChar = map.charAt(64);
if (paddingChar) {
while (base64Chars.length % 4) {
base64Chars.push(paddingChar);
}
}
return base64Chars.join('');
},
/**
* Converts a Base64 string to a word array.
*
* @param {string} base64Str The Base64 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Base64.parse(base64String);
*/
parse: function (base64Str) {
// Shortcuts
var base64StrLength = base64Str.length;
var map = this._map;
// Ignore padding
var paddingChar = map.charAt(64);
if (paddingChar) {
var paddingIndex = base64Str.indexOf(paddingChar);
if (paddingIndex != -1) {
base64StrLength = paddingIndex;
}
}
// Convert
var words = [];
var nBytes = 0;
for (var i = 0; i < base64StrLength; i++) {
if (i % 4) {
var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
nBytes++;
}
}
return WordArray.create(words, nBytes);
},
_map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
};
}());
(function (Math) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_algo = C.algo;
// Constants table
var T = [];
// Compute constants
(function () {
for (var i = 0; i < 64; i++) {
T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0;
}
}());
/**
* MD5 hash algorithm.
*/
var MD5 = C_algo.MD5 = Hasher.extend({
_doReset: function () {
this._hash = new WordArray.init([
0x67452301, 0xefcdab89,
0x98badcfe, 0x10325476
]);
},
_doProcessBlock: function (M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
// Shortcuts
var offset_i = offset + i;
var M_offset_i = M[offset_i];
M[offset_i] = (
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
);
}
// Shortcuts
var H = this._hash.words;
var M_offset_0 = M[offset + 0];
var M_offset_1 = M[offset + 1];
var M_offset_2 = M[offset + 2];
var M_offset_3 = M[offset + 3];
var M_offset_4 = M[offset + 4];
var M_offset_5 = M[offset + 5];
var M_offset_6 = M[offset + 6];
var M_offset_7 = M[offset + 7];
var M_offset_8 = M[offset + 8];
var M_offset_9 = M[offset + 9];
var M_offset_10 = M[offset + 10];
var M_offset_11 = M[offset + 11];
var M_offset_12 = M[offset + 12];
var M_offset_13 = M[offset + 13];
var M_offset_14 = M[offset + 14];
var M_offset_15 = M[offset + 15];
// Working varialbes
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
// Computation
a = FF(a, b, c, d, M_offset_0, 7, T[0]);
d = FF(d, a, b, c, M_offset_1, 12, T[1]);
c = FF(c, d, a, b, M_offset_2, 17, T[2]);
b = FF(b, c, d, a, M_offset_3, 22, T[3]);
a = FF(a, b, c, d, M_offset_4, 7, T[4]);
d = FF(d, a, b, c, M_offset_5, 12, T[5]);
c = FF(c, d, a, b, M_offset_6, 17, T[6]);
b = FF(b, c, d, a, M_offset_7, 22, T[7]);
a = FF(a, b, c, d, M_offset_8, 7, T[8]);
d = FF(d, a, b, c, M_offset_9, 12, T[9]);
c = FF(c, d, a, b, M_offset_10, 17, T[10]);
b = FF(b, c, d, a, M_offset_11, 22, T[11]);
a = FF(a, b, c, d, M_offset_12, 7, T[12]);
d = FF(d, a, b, c, M_offset_13, 12, T[13]);
c = FF(c, d, a, b, M_offset_14, 17, T[14]);
b = FF(b, c, d, a, M_offset_15, 22, T[15]);
a = GG(a, b, c, d, M_offset_1, 5, T[16]);
d = GG(d, a, b, c, M_offset_6, 9, T[17]);
c = GG(c, d, a, b, M_offset_11, 14, T[18]);
b = GG(b, c, d, a, M_offset_0, 20, T[19]);
a = GG(a, b, c, d, M_offset_5, 5, T[20]);
d = GG(d, a, b, c, M_offset_10, 9, T[21]);
c = GG(c, d, a, b, M_offset_15, 14, T[22]);
b = GG(b, c, d, a, M_offset_4, 20, T[23]);
a = GG(a, b, c, d, M_offset_9, 5, T[24]);
d = GG(d, a, b, c, M_offset_14, 9, T[25]);
c = GG(c, d, a, b, M_offset_3, 14, T[26]);
b = GG(b, c, d, a, M_offset_8, 20, T[27]);
a = GG(a, b, c, d, M_offset_13, 5, T[28]);
d = GG(d, a, b, c, M_offset_2, 9, T[29]);
c = GG(c, d, a, b, M_offset_7, 14, T[30]);
b = GG(b, c, d, a, M_offset_12, 20, T[31]);
a = HH(a, b, c, d, M_offset_5, 4, T[32]);
d = HH(d, a, b, c, M_offset_8, 11, T[33]);
c = HH(c, d, a, b, M_offset_11, 16, T[34]);
b = HH(b, c, d, a, M_offset_14, 23, T[35]);
a = HH(a, b, c, d, M_offset_1, 4, T[36]);
d = HH(d, a, b, c, M_offset_4, 11, T[37]);
c = HH(c, d, a, b, M_offset_7, 16, T[38]);
b = HH(b, c, d, a, M_offset_10, 23, T[39]);
a = HH(a, b, c, d, M_offset_13, 4, T[40]);
d = HH(d, a, b, c, M_offset_0, 11, T[41]);
c = HH(c, d, a, b, M_offset_3, 16, T[42]);
b = HH(b, c, d, a, M_offset_6, 23, T[43]);
a = HH(a, b, c, d, M_offset_9, 4, T[44]);
d = HH(d, a, b, c, M_offset_12, 11, T[45]);
c = HH(c, d, a, b, M_offset_15, 16, T[46]);
b = HH(b, c, d, a, M_offset_2, 23, T[47]);
a = II(a, b, c, d, M_offset_0, 6, T[48]);
d = II(d, a, b, c, M_offset_7, 10, T[49]);
c = II(c, d, a, b, M_offset_14, 15, T[50]);
b = II(b, c, d, a, M_offset_5, 21, T[51]);
a = II(a, b, c, d, M_offset_12, 6, T[52]);
d = II(d, a, b, c, M_offset_3, 10, T[53]);
c = II(c, d, a, b, M_offset_10, 15, T[54]);
b = II(b, c, d, a, M_offset_1, 21, T[55]);
a = II(a, b, c, d, M_offset_8, 6, T[56]);
d = II(d, a, b, c, M_offset_15, 10, T[57]);
c = II(c, d, a, b, M_offset_6, 15, T[58]);
b = II(b, c, d, a, M_offset_13, 21, T[59]);
a = II(a, b, c, d, M_offset_4, 6, T[60]);
d = II(d, a, b, c, M_offset_11, 10, T[61]);
c = II(c, d, a, b, M_offset_2, 15, T[62]);
b = II(b, c, d, a, M_offset_9, 21, T[63]);
// Intermediate hash value
H[0] = (H[0] + a) | 0;
H[1] = (H[1] + b) | 0;
H[2] = (H[2] + c) | 0;
H[3] = (H[3] + d) | 0;
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000);
var nBitsTotalL = nBitsTotal;
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = (
(((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
(((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00)
);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
(((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
(((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00)
);
data.sigBytes = (dataWords.length + 1) * 4;
// Hash final blocks
this._process();
// Shortcuts
var hash = this._hash;
var H = hash.words;
// Swap endian
for (var i = 0; i < 4; i++) {
// Shortcut
var H_i = H[i];
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
}
// Return final computed hash
return hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
}
});
function FF(a, b, c, d, x, s, t) {
var n = a + ((b & c) | (~b & d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
function GG(a, b, c, d, x, s, t) {
var n = a + ((b & d) | (c & ~d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
function HH(a, b, c, d, x, s, t) {
var n = a + (b ^ c ^ d) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
function II(a, b, c, d, x, s, t) {
var n = a + (c ^ (b | ~d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.MD5('message');
* var hash = CryptoJS.MD5(wordArray);
*/
C.MD5 = Hasher._createHelper(MD5);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacMD5(message, key);
*/
C.HmacMD5 = Hasher._createHmacHelper(MD5);
}(Math));
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var C_algo = C.algo;
var MD5 = C_algo.MD5;
/**
* This key derivation function is meant to conform with EVP_BytesToKey.
* www.openssl.org/docs/crypto/EVP_BytesToKey.html
*/
var EvpKDF = C_algo.EvpKDF = Base.extend({
/**
* Configuration options.
*
* @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
* @property {Hasher} hasher The hash algorithm to use. Default: MD5
* @property {number} iterations The number of iterations to perform. Default: 1
*/
cfg: Base.extend({
keySize: 128/32,
hasher: MD5,
iterations: 1
}),
/**
* Initializes a newly created key derivation function.
*
* @param {Object} cfg (Optional) The configuration options to use for the derivation.
*
* @example
*
* var kdf = CryptoJS.algo.EvpKDF.create();
* var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
* var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
*/
init: function (cfg) {
this.cfg = this.cfg.extend(cfg);
},
/**
* Derives a key from a password.
*
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
*
* @return {WordArray} The derived key.
*
* @example
*
* var key = kdf.compute(password, salt);
*/
compute: function (password, salt) {
// Shortcut
var cfg = this.cfg;
// Init hasher
var hasher = cfg.hasher.create();
// Initial values
var derivedKey = WordArray.create();
// Shortcuts
var derivedKeyWords = derivedKey.words;
var keySize = cfg.keySize;
var iterations = cfg.iterations;
// Generate key
while (derivedKeyWords.length < keySize) {
if (block) {
hasher.update(block);
}
var block = hasher.update(password).finalize(salt);
hasher.reset();
// Iterations
for (var i = 1; i < iterations; i++) {
block = hasher.finalize(block);
hasher.reset();
}
derivedKey.concat(block);
}
derivedKey.sigBytes = keySize * 4;
return derivedKey;
}
});
/**
* Derives a key from a password.
*
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
* @param {Object} cfg (Optional) The configuration options to use for this computation.
*
* @return {WordArray} The derived key.
*
* @static
*
* @example
*
* var key = CryptoJS.EvpKDF(password, salt);
* var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
* var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
*/
C.EvpKDF = function (password, salt, cfg) {
return EvpKDF.create(cfg).compute(password, salt);
};
}());
/**
* Cipher core components.
*/
CryptoJS.lib.Cipher || (function (undefined) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
var C_enc = C.enc;
var Utf8 = C_enc.Utf8;
var Base64 = C_enc.Base64;
var C_algo = C.algo;
var EvpKDF = C_algo.EvpKDF;
/**
* Abstract base cipher template.
*
* @property {number} keySize This cipher's key size. Default: 4 (128 bits)
* @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
* @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
* @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
*/
var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
/**
* Configuration options.
*
* @property {WordArray} iv The IV to use for this operation.
*/
cfg: Base.extend(),
/**
* Creates this cipher in encryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
*/
createEncryptor: function (key, cfg) {
return this.create(this._ENC_XFORM_MODE, key, cfg);
},
/**
* Creates this cipher in decryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
*/
createDecryptor: function (key, cfg) {
return this.create(this._DEC_XFORM_MODE, key, cfg);
},
/**
* Initializes a newly created cipher.
*
* @param {number} xformMode Either the encryption or decryption transormation mode constant.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @example
*
* var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
*/
init: function (xformMode, key, cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Store transform mode and key
this._xformMode = xformMode;
this._key = key;
// Set initial values
this.reset();
},
/**
* Resets this cipher to its initial state.
*
* @example
*
* cipher.reset();
*/
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-cipher logic
this._doReset();
},
/**
* Adds data to be encrypted or decrypted.
*
* @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
*
* @return {WordArray} The data after processing.
*
* @example
*
* var encrypted = cipher.process('data');
* var encrypted = cipher.process(wordArray);
*/
process: function (dataUpdate) {
// Append
this._append(dataUpdate);
// Process available blocks
return this._process();
},
/**
* Finalizes the encryption or decryption process.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
*
* @return {WordArray} The data after final processing.
*
* @example
*
* var encrypted = cipher.finalize();
* var encrypted = cipher.finalize('data');
* var encrypted = cipher.finalize(wordArray);
*/
finalize: function (dataUpdate) {
// Final data update
if (dataUpdate) {
this._append(dataUpdate);
}
// Perform concrete-cipher logic
var finalProcessedData = this._doFinalize();
return finalProcessedData;
},
keySize: 128/32,
ivSize: 128/32,
_ENC_XFORM_MODE: 1,
_DEC_XFORM_MODE: 2,
/**
* Creates shortcut functions to a cipher's object interface.
*
* @param {Cipher} cipher The cipher to create a helper for.
*
* @return {Object} An object with encrypt and decrypt shortcut functions.
*
* @static
*
* @example
*
* var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
*/
_createHelper: (function () {
function selectCipherStrategy(key) {
if (typeof key == 'string') {
return PasswordBasedCipher;
} else {
return SerializableCipher;
}
}
return function (cipher) {
return {
encrypt: function (message, key, cfg) {
return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
},
decrypt: function (ciphertext, key, cfg) {
return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
}
};
};
}())
});
/**
* Abstract base stream cipher template.
*
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
*/
var StreamCipher = C_lib.StreamCipher = Cipher.extend({
_doFinalize: function () {
// Process partial blocks
var finalProcessedBlocks = this._process(!!'flush');
return finalProcessedBlocks;
},
blockSize: 1
});
/**
* Mode namespace.
*/
var C_mode = C.mode = {};
/**
* Abstract base block cipher mode template.
*/
var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
/**
* Creates this mode for encryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
*/
createEncryptor: function (cipher, iv) {
return this.Encryptor.create(cipher, iv);
},
/**
* Creates this mode for decryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
*/
createDecryptor: function (cipher, iv) {
return this.Decryptor.create(cipher, iv);
},
/**
* Initializes a newly created mode.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @example
*
* var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
*/
init: function (cipher, iv) {
this._cipher = cipher;
this._iv = iv;
}
});
/**
* Cipher Block Chaining mode.
*/
var CBC = C_mode.CBC = (function () {
/**
* Abstract base CBC mode.
*/
var CBC = BlockCipherMode.extend();
/**
* CBC encryptor.
*/
CBC.Encryptor = CBC.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// XOR and encrypt
xorBlock.call(this, words, offset, blockSize);
cipher.encryptBlock(words, offset);
// Remember this block to use with next block
this._prevBlock = words.slice(offset, offset + blockSize);
}
});
/**
* CBC decryptor.
*/
CBC.Decryptor = CBC.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// Remember this block to use with next block
var thisBlock = words.slice(offset, offset + blockSize);
// Decrypt and XOR
cipher.decryptBlock(words, offset);
xorBlock.call(this, words, offset, blockSize);
// This block becomes the previous block
this._prevBlock = thisBlock;
}
});
function xorBlock(words, offset, blockSize) {
// Shortcut
var iv = this._iv;
// Choose mixing block
if (iv) {
var block = iv;
// Remove IV for subsequent blocks
this._iv = undefined;
} else {
var block = this._prevBlock;
}
// XOR blocks
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= block[i];
}
}
return CBC;
}());
/**
* Padding namespace.
*/
var C_pad = C.pad = {};
/**
* PKCS #5/7 padding strategy.
*/
var Pkcs7 = C_pad.Pkcs7 = {
/**
* Pads data using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to pad.
* @param {number} blockSize The multiple that the data should be padded to.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.pad(wordArray, 4);
*/
pad: function (data, blockSize) {
// Shortcut
var blockSizeBytes = blockSize * 4;
// Count padding bytes
var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
// Create padding word
var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
// Create padding
var paddingWords = [];
for (var i = 0; i < nPaddingBytes; i += 4) {
paddingWords.push(paddingWord);
}
var padding = WordArray.create(paddingWords, nPaddingBytes);
// Add padding
data.concat(padding);
},
/**
* Unpads data that had been padded using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to unpad.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.unpad(wordArray);
*/
unpad: function (data) {
// Get number of padding bytes from last byte
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
data.sigBytes -= nPaddingBytes;
}
};
/**
* Abstract base block cipher template.
*
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
*/
var BlockCipher = C_lib.BlockCipher = Cipher.extend({
/**
* Configuration options.
*
* @property {Mode} mode The block mode to use. Default: CBC
* @property {Padding} padding The padding strategy to use. Default: Pkcs7
*/
cfg: Cipher.cfg.extend({
mode: CBC,
padding: Pkcs7
}),
reset: function () {
// Reset cipher
Cipher.reset.call(this);
// Shortcuts
var cfg = this.cfg;
var iv = cfg.iv;
var mode = cfg.mode;
// Reset block mode
if (this._xformMode == this._ENC_XFORM_MODE) {
var modeCreator = mode.createEncryptor;
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
var modeCreator = mode.createDecryptor;
// Keep at least one block in the buffer for unpadding
this._minBufferSize = 1;
}
this._mode = modeCreator.call(mode, this, iv && iv.words);
},
_doProcessBlock: function (words, offset) {
this._mode.processBlock(words, offset);
},
_doFinalize: function () {
// Shortcut
var padding = this.cfg.padding;
// Finalize
if (this._xformMode == this._ENC_XFORM_MODE) {
// Pad data
padding.pad(this._data, this.blockSize);
// Process final blocks
var finalProcessedBlocks = this._process(!!'flush');
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
// Process final blocks
var finalProcessedBlocks = this._process(!!'flush');
// Unpad data
padding.unpad(finalProcessedBlocks);
}
return finalProcessedBlocks;
},
blockSize: 128/32
});
/**
* A collection of cipher parameters.
*
* @property {WordArray} ciphertext The raw ciphertext.
* @property {WordArray} key The key to this ciphertext.
* @property {WordArray} iv The IV used in the ciphering operation.
* @property {WordArray} salt The salt used with a key derivation function.
* @property {Cipher} algorithm The cipher algorithm.
* @property {Mode} mode The block mode used in the ciphering operation.
* @property {Padding} padding The padding scheme used in the ciphering operation.
* @property {number} blockSize The block size of the cipher.
* @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
*/
var CipherParams = C_lib.CipherParams = Base.extend({
/**
* Initializes a newly created cipher params object.
*
* @param {Object} cipherParams An object with any of the possible cipher parameters.
*
* @example
*
* var cipherParams = CryptoJS.lib.CipherParams.create({
* ciphertext: ciphertextWordArray,
* key: keyWordArray,
* iv: ivWordArray,
* salt: saltWordArray,
* algorithm: CryptoJS.algo.AES,
* mode: CryptoJS.mode.CBC,
* padding: CryptoJS.pad.PKCS7,
* blockSize: 4,
* formatter: CryptoJS.format.OpenSSL
* });
*/
init: function (cipherParams) {
this.mixIn(cipherParams);
},
/**
* Converts this cipher params object to a string.
*
* @param {Format} formatter (Optional) The formatting strategy to use.
*
* @return {string} The stringified cipher params.
*
* @throws Error If neither the formatter nor the default formatter is set.
*
* @example
*
* var string = cipherParams + '';
* var string = cipherParams.toString();
* var string = cipherParams.toString(CryptoJS.format.OpenSSL);
*/
toString: function (formatter) {
return (formatter || this.formatter).stringify(this);
}
});
/**
* Format namespace.
*/
var C_format = C.format = {};
/**
* OpenSSL formatting strategy.
*/
var OpenSSLFormatter = C_format.OpenSSL = {
/**
* Converts a cipher params object to an OpenSSL-compatible string.
*
* @param {CipherParams} cipherParams The cipher params object.
*
* @return {string} The OpenSSL-compatible string.
*
* @static
*
* @example
*
* var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
*/
stringify: function (cipherParams) {
// Shortcuts
var ciphertext = cipherParams.ciphertext;
var salt = cipherParams.salt;
// Format
if (salt) {
var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
} else {
var wordArray = ciphertext;
}
return wordArray.toString(Base64);
},
/**
* Converts an OpenSSL-compatible string to a cipher params object.
*
* @param {string} openSSLStr The OpenSSL-compatible string.
*
* @return {CipherParams} The cipher params object.
*
* @static
*
* @example
*
* var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
*/
parse: function (openSSLStr) {
// Parse base64
var ciphertext = Base64.parse(openSSLStr);
// Shortcut
var ciphertextWords = ciphertext.words;
// Test for salt
if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
// Extract salt
var salt = WordArray.create(ciphertextWords.slice(2, 4));
// Remove salt from ciphertext
ciphertextWords.splice(0, 4);
ciphertext.sigBytes -= 16;
}
return CipherParams.create({ ciphertext: ciphertext, salt: salt });
}
};
/**
* A cipher wrapper that returns ciphertext as a serializable cipher params object.
*/
var SerializableCipher = C_lib.SerializableCipher = Base.extend({
/**
* Configuration options.
*
* @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
*/
cfg: Base.extend({
format: OpenSSLFormatter
}),
/**
* Encrypts a message.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
encrypt: function (cipher, message, key, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Encrypt
var encryptor = cipher.createEncryptor(key, cfg);
var ciphertext = encryptor.finalize(message);
// Shortcut
var cipherCfg = encryptor.cfg;
// Create and return serializable cipher params
return CipherParams.create({
ciphertext: ciphertext,
key: key,
iv: cipherCfg.iv,
algorithm: cipher,
mode: cipherCfg.mode,
padding: cipherCfg.padding,
blockSize: cipher.blockSize,
formatter: cfg.format
});
},
/**
* Decrypts serialized ciphertext.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
decrypt: function (cipher, ciphertext, key, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Decrypt
var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
return plaintext;
},
/**
* Converts serialized ciphertext to CipherParams,
* else assumed CipherParams already and returns ciphertext unchanged.
*
* @param {CipherParams|string} ciphertext The ciphertext.
* @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
*
* @return {CipherParams} The unserialized ciphertext.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
*/
_parse: function (ciphertext, format) {
if (typeof ciphertext == 'string') {
return format.parse(ciphertext, this);
} else {
return ciphertext;
}
}
});
/**
* Key derivation function namespace.
*/
var C_kdf = C.kdf = {};
/**
* OpenSSL key derivation function.
*/
var OpenSSLKdf = C_kdf.OpenSSL = {
/**
* Derives a key and IV from a password.
*
* @param {string} password The password to derive from.
* @param {number} keySize The size in words of the key to generate.
* @param {number} ivSize The size in words of the IV to generate.
* @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
*
* @return {CipherParams} A cipher params object with the key, IV, and salt.
*
* @static
*
* @example
*
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
*/
execute: function (password, keySize, ivSize, salt) {
// Generate random salt
if (!salt) {
salt = WordArray.random(64/8);
}
// Derive key and IV
var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
// Separate key and IV
var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
key.sigBytes = keySize * 4;
// Return params
return CipherParams.create({ key: key, iv: iv, salt: salt });
}
};
/**
* A serializable cipher wrapper that derives the key from a password,
* and returns ciphertext as a serializable cipher params object.
*/
var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
/**
* Configuration options.
*
* @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
*/
cfg: SerializableCipher.cfg.extend({
kdf: OpenSSLKdf
}),
/**
* Encrypts a message using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
*/
encrypt: function (cipher, message, password, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
// Add IV to config
cfg.iv = derivedParams.iv;
// Encrypt
var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
// Mix in derived params
ciphertext.mixIn(derivedParams);
return ciphertext;
},
/**
* Decrypts serialized ciphertext using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
*/
decrypt: function (cipher, ciphertext, password, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
// Add IV to config
cfg.iv = derivedParams.iv;
// Decrypt
var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
return plaintext;
}
});
}());
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var BlockCipher = C_lib.BlockCipher;
var C_algo = C.algo;
// Lookup tables
var SBOX = [];
var INV_SBOX = [];
var SUB_MIX_0 = [];
var SUB_MIX_1 = [];
var SUB_MIX_2 = [];
var SUB_MIX_3 = [];
var INV_SUB_MIX_0 = [];
var INV_SUB_MIX_1 = [];
var INV_SUB_MIX_2 = [];
var INV_SUB_MIX_3 = [];
// Compute lookup tables
(function () {
// Compute double table
var d = [];
for (var i = 0; i < 256; i++) {
if (i < 128) {
d[i] = i << 1;
} else {
d[i] = (i << 1) ^ 0x11b;
}
}
// Walk GF(2^8)
var x = 0;
var xi = 0;
for (var i = 0; i < 256; i++) {
// Compute sbox
var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
SBOX[x] = sx;
INV_SBOX[sx] = x;
// Compute multiplication
var x2 = d[x];
var x4 = d[x2];
var x8 = d[x4];
// Compute sub bytes, mix columns tables
var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
SUB_MIX_0[x] = (t << 24) | (t >>> 8);
SUB_MIX_1[x] = (t << 16) | (t >>> 16);
SUB_MIX_2[x] = (t << 8) | (t >>> 24);
SUB_MIX_3[x] = t;
// Compute inv sub bytes, inv mix columns tables
var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
INV_SUB_MIX_3[sx] = t;
// Compute next counter
if (!x) {
x = xi = 1;
} else {
x = x2 ^ d[d[d[x8 ^ x2]]];
xi ^= d[d[xi]];
}
}
}());
// Precomputed Rcon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
/**
* AES block cipher algorithm.
*/
var AES = C_algo.AES = BlockCipher.extend({
_doReset: function () {
// Shortcuts
var key = this._key;
var keyWords = key.words;
var keySize = key.sigBytes / 4;
// Compute number of rounds
var nRounds = this._nRounds = keySize + 6
// Compute number of key schedule rows
var ksRows = (nRounds + 1) * 4;
// Compute key schedule
var keySchedule = this._keySchedule = [];
for (var ksRow = 0; ksRow < ksRows; ksRow++) {
if (ksRow < keySize) {
keySchedule[ksRow] = keyWords[ksRow];
} else {
var t = keySchedule[ksRow - 1];
if (!(ksRow % keySize)) {
// Rot word
t = (t << 8) | (t >>> 24);
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
// Mix Rcon
t ^= RCON[(ksRow / keySize) | 0] << 24;
} else if (keySize > 6 && ksRow % keySize == 4) {
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
}
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
}
}
// Compute inv key schedule
var invKeySchedule = this._invKeySchedule = [];
for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
var ksRow = ksRows - invKsRow;
if (invKsRow % 4) {
var t = keySchedule[ksRow];
} else {
var t = keySchedule[ksRow - 4];
}
if (invKsRow < 4 || ksRow <= 4) {
invKeySchedule[invKsRow] = t;
} else {
invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
}
}
},
encryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
},
decryptBlock: function (M, offset) {
// Swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
// Inv swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
},
_doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
// Shortcut
var nRounds = this._nRounds;
// Get input, add round key
var s0 = M[offset] ^ keySchedule[0];
var s1 = M[offset + 1] ^ keySchedule[1];
var s2 = M[offset + 2] ^ keySchedule[2];
var s3 = M[offset + 3] ^ keySchedule[3];
// Key schedule row counter
var ksRow = 4;
// Rounds
for (var round = 1; round < nRounds; round++) {
// Shift rows, sub bytes, mix columns, add round key
var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
// Update state
s0 = t0;
s1 = t1;
s2 = t2;
s3 = t3;
}
// Shift rows, sub bytes, add round key
var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
// Set output
M[offset] = t0;
M[offset + 1] = t1;
M[offset + 2] = t2;
M[offset + 3] = t3;
},
keySize: 256/32
});
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
*/
C.AES = BlockCipher._createHelper(AES);
}());
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
;(function() {
'use strict';
// Test for webcrypto support, polyfill if needed.
if (window.crypto.subtle === undefined || window.crypto.subtle === null) {
window.crypto.subtle = (function () {
var StaticArrayBufferProto = new ArrayBuffer().__proto__;
function assertIsArrayBuffer(thing) {
if (thing !== Object(thing) || thing.__proto__ != StaticArrayBufferProto)
throw new Error("Needed a ArrayBuffer");
}
// Synchronous implementation functions for polyfilling webcrypto
// All inputs/outputs are arraybuffers!
function HmacSHA256(key, input) {
assertIsArrayBuffer(key);
assertIsArrayBuffer(input);
return CryptoJS.HmacSHA256(
CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(input)),
CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(key))
);
};
function encryptAESCBC(plaintext, key, iv) {
assertIsArrayBuffer(plaintext);
assertIsArrayBuffer(key);
assertIsArrayBuffer(iv);
return CryptoJS.AES.encrypt(
CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(plaintext)),
CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(key)),
{ iv: CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(iv)) }
).ciphertext;
};
function decryptAESCBC(ciphertext, key, iv) {
assertIsArrayBuffer(ciphertext);
assertIsArrayBuffer(key);
assertIsArrayBuffer(iv);
return CryptoJS.AES.decrypt(
btoa(axolotlInternal.utils.convertToString(ciphertext)),
CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(key)),
{ iv: CryptoJS.enc.Latin1.parse(axolotlInternal.utils.convertToString(iv)) }
);
};
// utility function for connecting front and back ends via promises
// Takes an implementation function and 0 or more arguments
function promise(implementation) {
var args = Array.prototype.slice.call(arguments);
args.shift();
return new Promise(function(resolve) {
var wordArray = implementation.apply(this, args);
// convert 32bit WordArray to array buffer
var str = wordArray.toString(CryptoJS.enc.Latin1)
var bytes = new Uint8Array(str.length);
for (var i=0; i
Copyright 2009 The Closure Library Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @license Long.js (c) 2013 Daniel Wirtz
* Released under the Apache License, Version 2.0
* see: https://github.com/dcodeIO/Long.js for details
*/
(function(global) {
"use strict";
/**
* Constructs a 64 bit two's-complement integer, given its low and high 32 bit values as *signed* integers.
* See the from* functions below for more convenient ways of constructing Longs.
* @exports Long
* @class A Long class for representing a 64 bit two's-complement integer value.
* @param {number} low The low (signed) 32 bits of the long
* @param {number} high The high (signed) 32 bits of the long
* @param {boolean=} unsigned Whether unsigned or not, defaults to `false` for signed
* @constructor
*/
var Long = function(low, high, unsigned) {
/**
* The low 32 bits as a signed value.
* @type {number}
* @expose
*/
this.low = low|0;
/**
* The high 32 bits as a signed value.
* @type {number}
* @expose
*/
this.high = high|0;
/**
* Whether unsigned or not.
* @type {boolean}
* @expose
*/
this.unsigned = !!unsigned;
};
// The internal representation of a long is the two given signed, 32-bit values.
// We use 32-bit pieces because these are the size of integers on which
// Javascript performs bit-operations. For operations like addition and
// multiplication, we split each number into 16 bit pieces, which can easily be
// multiplied within Javascript's floating-point representation without overflow
// or change in sign.
//
// In the algorithms below, we frequently reduce the negative case to the
// positive case by negating the input(s) and then post-processing the result.
// Note that we must ALWAYS check specially whether those values are MIN_VALUE
// (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
// a positive number, it overflows back into a negative). Not handling this
// case would often result in infinite recursion.
//
// Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the from*
// methods on which they depend.
/**
* Tests if the specified object is a Long.
* @param {*} obj Object
* @returns {boolean}
* @expose
*/
Long.isLong = function(obj) {
return (obj && obj instanceof Long) === true;
};
/**
* A cache of the Long representations of small integer values.
* @type {!Object}
* @inner
*/
var INT_CACHE = {};
/**
* A cache of the Long representations of small unsigned integer values.
* @type {!Object}
* @inner
*/
var UINT_CACHE = {};
/**
* Returns a Long representing the given 32 bit integer value.
* @param {number} value The 32 bit integer in question
* @param {boolean=} unsigned Whether unsigned or not, defaults to `false` for signed
* @returns {!Long} The corresponding Long value
* @expose
*/
Long.fromInt = function(value, unsigned) {
var obj, cachedObj;
if (!unsigned) {
value = value | 0;
if (-128 <= value && value < 128) {
cachedObj = INT_CACHE[value];
if (cachedObj)
return cachedObj;
}
obj = new Long(value, value < 0 ? -1 : 0, false);
if (-128 <= value && value < 128)
INT_CACHE[value] = obj;
return obj;
} else {
value = value >>> 0;
if (0 <= value && value < 256) {
cachedObj = UINT_CACHE[value];
if (cachedObj)
return cachedObj;
}
obj = new Long(value, (value | 0) < 0 ? -1 : 0, true);
if (0 <= value && value < 256)
UINT_CACHE[value] = obj;
return obj;
}
};
/**
* Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
* @param {number} value The number in question
* @param {boolean=} unsigned Whether unsigned or not, defaults to `false` for signed
* @returns {!Long} The corresponding Long value
* @expose
*/
Long.fromNumber = function(value, unsigned) {
unsigned = !!unsigned;
if (isNaN(value) || !isFinite(value))
return Long.ZERO;
if (!unsigned && value <= -TWO_PWR_63_DBL)
return Long.MIN_VALUE;
if (!unsigned && value + 1 >= TWO_PWR_63_DBL)
return Long.MAX_VALUE;
if (unsigned && value >= TWO_PWR_64_DBL)
return Long.MAX_UNSIGNED_VALUE;
if (value < 0)
return Long.fromNumber(-value, unsigned).negate();
return new Long((value % TWO_PWR_32_DBL) | 0, (value / TWO_PWR_32_DBL) | 0, unsigned);
};
/**
* Returns a Long representing the 64 bit integer that comes by concatenating the given low and high bits. Each is
* assumed to use 32 bits.
* @param {number} lowBits The low 32 bits
* @param {number} highBits The high 32 bits
* @param {boolean=} unsigned Whether unsigned or not, defaults to `false` for signed
* @returns {!Long} The corresponding Long value
* @expose
*/
Long.fromBits = function(lowBits, highBits, unsigned) {
return new Long(lowBits, highBits, unsigned);
};
/**
* Returns a Long representation of the given string, written using the specified radix.
* @param {string} str The textual representation of the Long
* @param {(boolean|number)=} unsigned Whether unsigned or not, defaults to `false` for signed
* @param {number=} radix The radix in which the text is written (2-36), defaults to 10
* @returns {!Long} The corresponding Long value
* @expose
*/
Long.fromString = function(str, unsigned, radix) {
if (str.length === 0)
throw Error('number format error: empty string');
if (str === "NaN" || str === "Infinity" || str === "+Infinity" || str === "-Infinity")
return Long.ZERO;
if (typeof unsigned === 'number') // For goog.math.long compatibility
radix = unsigned,
unsigned = false;
radix = radix || 10;
if (radix < 2 || 36 < radix)
throw Error('radix out of range: ' + radix);
var p;
if ((p = str.indexOf('-')) > 0)
throw Error('number format error: interior "-" character: ' + str);
else if (p === 0)
return Long.fromString(str.substring(1), unsigned, radix).negate();
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = Long.fromNumber(Math.pow(radix, 8));
var result = Long.ZERO;
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = Long.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(Long.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(Long.fromNumber(value));
}
}
result.unsigned = unsigned;
return result;
};
/**
* Converts the specified value to a Long.
* @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val Value
* @returns {!Long}
* @expose
*/
Long.fromValue = function(val) {
if (typeof val === 'number')
return Long.fromNumber(val);
if (typeof val === 'string')
return Long.fromString(val);
if (Long.isLong(val))
return val;
// Throws for not an object (undefined, null):
return new Long(val.low, val.high, val.unsigned);
};
// NOTE: the compiler should inline these constant values below and then remove these variables, so there should be
// no runtime penalty for these.
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_16_DBL = 1 << 16;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_24_DBL = 1 << 24;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;
/**
* @type {!Long}
* @const
* @inner
*/
var TWO_PWR_24 = Long.fromInt(TWO_PWR_24_DBL);
/**
* Signed zero.
* @type {!Long}
* @expose
*/
Long.ZERO = Long.fromInt(0);
/**
* Unsigned zero.
* @type {!Long}
* @expose
*/
Long.UZERO = Long.fromInt(0, true);
/**
* Signed one.
* @type {!Long}
* @expose
*/
Long.ONE = Long.fromInt(1);
/**
* Unsigned one.
* @type {!Long}
* @expose
*/
Long.UONE = Long.fromInt(1, true);
/**
* Signed negative one.
* @type {!Long}
* @expose
*/
Long.NEG_ONE = Long.fromInt(-1);
/**
* Maximum signed value.
* @type {!Long}
* @expose
*/
Long.MAX_VALUE = Long.fromBits(0xFFFFFFFF|0, 0x7FFFFFFF|0, false);
/**
* Maximum unsigned value.
* @type {!Long}
* @expose
*/
Long.MAX_UNSIGNED_VALUE = Long.fromBits(0xFFFFFFFF|0, 0xFFFFFFFF|0, true);
/**
* Minimum signed value.
* @type {!Long}
* @expose
*/
Long.MIN_VALUE = Long.fromBits(0, 0x80000000|0, false);
/**
* Converts the Long to a 32 bit integer, assuming it is a 32 bit integer.
* @returns {number}
* @expose
*/
Long.prototype.toInt = function() {
return this.unsigned ? this.low >>> 0 : this.low;
};
/**
* Converts the Long to a the nearest floating-point representation of this value (double, 53 bit mantissa).
* @returns {number}
* @expose
*/
Long.prototype.toNumber = function() {
if (this.unsigned) {
return ((this.high >>> 0) * TWO_PWR_32_DBL) + (this.low >>> 0);
}
return this.high * TWO_PWR_32_DBL + (this.low >>> 0);
};
/**
* Converts the Long to a string written in the specified radix.
* @param {number=} radix Radix (2-36), defaults to 10
* @returns {string}
* @override
* @throws {RangeError} If `radix` is out of range
* @expose
*/
Long.prototype.toString = function(radix) {
radix = radix || 10;
if (radix < 2 || 36 < radix)
throw RangeError('radix out of range: ' + radix);
if (this.isZero())
return '0';
var rem;
if (this.isNegative()) { // Unsigned Longs are never negative
if (this.equals(Long.MIN_VALUE)) {
// We need to change the Long value before it can be negated, so we remove
// the bottom-most digit in this base and then recurse to do the rest.
var radixLong = Long.fromNumber(radix);
var div = this.div(radixLong);
rem = div.multiply(radixLong).subtract(this);
return div.toString(radix) + rem.toInt().toString(radix);
} else
return '-' + this.negate().toString(radix);
}
// Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = Long.fromNumber(Math.pow(radix, 6), this.unsigned);
rem = this;
var result = '';
while (true) {
var remDiv = rem.div(radixToPower),
intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0,
digits = intval.toString(radix);
rem = remDiv;
if (rem.isZero())
return digits + result;
else {
while (digits.length < 6)
digits = '0' + digits;
result = '' + digits + result;
}
}
};
/**
* Gets the high 32 bits as a signed integer.
* @returns {number} Signed high bits
* @expose
*/
Long.prototype.getHighBits = function() {
return this.high;
};
/**
* Gets the high 32 bits as an unsigned integer.
* @returns {number} Unsigned high bits
* @expose
*/
Long.prototype.getHighBitsUnsigned = function() {
return this.high >>> 0;
};
/**
* Gets the low 32 bits as a signed integer.
* @returns {number} Signed low bits
* @expose
*/
Long.prototype.getLowBits = function() {
return this.low;
};
/**
* Gets the low 32 bits as an unsigned integer.
* @returns {number} Unsigned low bits
* @expose
*/
Long.prototype.getLowBitsUnsigned = function() {
return this.low >>> 0;
};
/**
* Gets the number of bits needed to represent the absolute value of this Long.
* @returns {number}
* @expose
*/
Long.prototype.getNumBitsAbs = function() {
if (this.isNegative()) // Unsigned Longs are never negative
return this.equals(Long.MIN_VALUE) ? 64 : this.negate().getNumBitsAbs();
var val = this.high != 0 ? this.high : this.low;
for (var bit = 31; bit > 0; bit--)
if ((val & (1 << bit)) != 0)
break;
return this.high != 0 ? bit + 33 : bit + 1;
};
/**
* Tests if this Long's value equals zero.
* @returns {boolean}
* @expose
*/
Long.prototype.isZero = function() {
return this.high === 0 && this.low === 0;
};
/**
* Tests if this Long's value is negative.
* @returns {boolean}
* @expose
*/
Long.prototype.isNegative = function() {
return !this.unsigned && this.high < 0;
};
/**
* Tests if this Long's value is positive.
* @returns {boolean}
* @expose
*/
Long.prototype.isPositive = function() {
return this.unsigned || this.high >= 0;
};
/**
* Tests if this Long's value is odd.
* @returns {boolean}
* @expose
*/
Long.prototype.isOdd = function() {
return (this.low & 1) === 1;
};
/**
* Tests if this Long's value is even.
* @returns {boolean}
* @expose
*/
Long.prototype.isEven = function() {
return (this.low & 1) === 0;
};
/**
* Tests if this Long's value equals the specified's.
* @param {!Long|number|string} other Other value
* @returns {boolean}
* @expose
*/
Long.prototype.equals = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
if (this.unsigned !== other.unsigned && (this.high >>> 31) === 1 && (other.high >>> 31) === 1)
return false;
return this.high === other.high && this.low === other.low;
};
/**
* Tests if this Long's value differs from the specified's.
* @param {!Long|number|string} other Other value
* @returns {boolean}
* @expose
*/
Long.prototype.notEquals = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return !this.equals(other);
};
/**
* Tests if this Long's value is less than the specified's.
* @param {!Long|number|string} other Other value
* @returns {boolean}
* @expose
*/
Long.prototype.lessThan = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return this.compare(other) < 0;
};
/**
* Tests if this Long's value is less than or equal the specified's.
* @param {!Long|number|string} other Other value
* @returns {boolean}
* @expose
*/
Long.prototype.lessThanOrEqual = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return this.compare(other) <= 0;
};
/**
* Tests if this Long's value is greater than the specified's.
* @param {!Long|number|string} other Other value
* @returns {boolean}
* @expose
*/
Long.prototype.greaterThan = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return this.compare(other) > 0;
};
/**
* Tests if this Long's value is greater than or equal the specified's.
* @param {!Long|number|string} other Other value
* @returns {boolean}
* @expose
*/
Long.prototype.greaterThanOrEqual = function(other) {
return this.compare(other) >= 0;
};
/**
* Compares this Long's value with the specified's.
* @param {!Long|number|string} other Other value
* @returns {number} 0 if they are the same, 1 if the this is greater and -1
* if the given one is greater
* @expose
*/
Long.prototype.compare = function(other) {
if (this.equals(other))
return 0;
var thisNeg = this.isNegative(),
otherNeg = other.isNegative();
if (thisNeg && !otherNeg)
return -1;
if (!thisNeg && otherNeg)
return 1;
// At this point the sign bits are the same
if (!this.unsigned)
return this.subtract(other).isNegative() ? -1 : 1;
// Both are positive if at least one is unsigned
return (other.high >>> 0) > (this.high >>> 0) || (other.high === this.high && (other.low >>> 0) > (this.low >>> 0)) ? -1 : 1;
};
/**
* Negates this Long's value.
* @returns {!Long} Negated Long
* @expose
*/
Long.prototype.negate = function() {
if (!this.unsigned && this.equals(Long.MIN_VALUE))
return Long.MIN_VALUE;
return this.not().add(Long.ONE);
};
/**
* Returns the sum of this and the specified Long.
* @param {!Long|number|string} addend Addend
* @returns {!Long} Sum
* @expose
*/
Long.prototype.add = function(addend) {
if (!Long.isLong(addend))
addend = Long.fromValue(addend);
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
var a48 = this.high >>> 16;
var a32 = this.high & 0xFFFF;
var a16 = this.low >>> 16;
var a00 = this.low & 0xFFFF;
var b48 = addend.high >>> 16;
var b32 = addend.high & 0xFFFF;
var b16 = addend.low >>> 16;
var b00 = addend.low & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 + b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 + b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 + b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 + b48;
c48 &= 0xFFFF;
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned);
};
/**
* Returns the difference of this and the specified Long.
* @param {!Long|number|string} subtrahend Subtrahend
* @returns {!Long} Difference
* @expose
*/
Long.prototype.subtract = function(subtrahend) {
if (!Long.isLong(subtrahend))
subtrahend = Long.fromValue(subtrahend);
return this.add(subtrahend.negate());
};
/**
* Returns the product of this and the specified Long.
* @param {!Long|number|string} multiplier Multiplier
* @returns {!Long} Product
* @expose
*/
Long.prototype.multiply = function(multiplier) {
if (this.isZero())
return Long.ZERO;
if (!Long.isLong(multiplier))
multiplier = Long.fromValue(multiplier);
if (multiplier.isZero())
return Long.ZERO;
if (this.equals(Long.MIN_VALUE))
return multiplier.isOdd() ? Long.MIN_VALUE : Long.ZERO;
if (multiplier.equals(Long.MIN_VALUE))
return this.isOdd() ? Long.MIN_VALUE : Long.ZERO;
if (this.isNegative()) {
if (multiplier.isNegative())
return this.negate().multiply(multiplier.negate());
else
return this.negate().multiply(multiplier).negate();
} else if (multiplier.isNegative())
return this.multiply(multiplier.negate()).negate();
// If both longs are small, use float multiplication
if (this.lessThan(TWO_PWR_24) && multiplier.lessThan(TWO_PWR_24))
return Long.fromNumber(this.toNumber() * multiplier.toNumber(), this.unsigned);
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
// We can skip products that would overflow.
var a48 = this.high >>> 16;
var a32 = this.high & 0xFFFF;
var a16 = this.low >>> 16;
var a00 = this.low & 0xFFFF;
var b48 = multiplier.high >>> 16;
var b32 = multiplier.high & 0xFFFF;
var b16 = multiplier.low >>> 16;
var b00 = multiplier.low & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 * b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 * b00;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c16 += a00 * b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 * b00;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a16 * b16;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a00 * b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
c48 &= 0xFFFF;
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned);
};
/**
* Returns this Long divided by the specified.
* @param {!Long|number|string} divisor Divisor
* @returns {!Long} Quotient
* @expose
*/
Long.prototype.div = function(divisor) {
if (!Long.isLong(divisor))
divisor = Long.fromValue(divisor);
if (divisor.isZero())
throw(new Error('division by zero'));
if (this.isZero())
return this.unsigned ? Long.UZERO : Long.ZERO;
var approx, rem, res;
if (this.equals(Long.MIN_VALUE)) {
if (divisor.equals(Long.ONE) || divisor.equals(Long.NEG_ONE))
return Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
else if (divisor.equals(Long.MIN_VALUE))
return Long.ONE;
else {
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
var halfThis = this.shiftRight(1);
approx = halfThis.div(divisor).shiftLeft(1);
if (approx.equals(Long.ZERO)) {
return divisor.isNegative() ? Long.ONE : Long.NEG_ONE;
} else {
rem = this.subtract(divisor.multiply(approx));
res = approx.add(rem.div(divisor));
return res;
}
}
} else if (divisor.equals(Long.MIN_VALUE))
return this.unsigned ? Long.UZERO : Long.ZERO;
if (this.isNegative()) {
if (divisor.isNegative())
return this.negate().div(divisor.negate());
return this.negate().div(divisor).negate();
} else if (divisor.isNegative())
return this.div(divisor.negate()).negate();
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
res = Long.ZERO;
rem = this;
while (rem.greaterThanOrEqual(divisor)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
approx = Math.max(1, Math.floor(rem.toNumber() / divisor.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit or
// the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2),
delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48),
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
approxRes = Long.fromNumber(approx),
approxRem = approxRes.multiply(divisor);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = Long.fromNumber(approx, this.unsigned);
approxRem = approxRes.multiply(divisor);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero())
approxRes = Long.ONE;
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
};
/**
* Returns this Long modulo the specified.
* @param {!Long|number|string} divisor Divisor
* @returns {!Long} Remainder
* @expose
*/
Long.prototype.modulo = function(divisor) {
if (!Long.isLong(divisor))
divisor = Long.fromValue(divisor);
return this.subtract(this.div(divisor).multiply(divisor));
};
/**
* Returns the bitwise NOT of this Long.
* @returns {!Long}
* @expose
*/
Long.prototype.not = function() {
return Long.fromBits(~this.low, ~this.high, this.unsigned);
};
/**
* Returns the bitwise AND of this Long and the specified.
* @param {!Long|number|string} other Other Long
* @returns {!Long}
* @expose
*/
Long.prototype.and = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return Long.fromBits(this.low & other.low, this.high & other.high, this.unsigned);
};
/**
* Returns the bitwise OR of this Long and the specified.
* @param {!Long|number|string} other Other Long
* @returns {!Long}
* @expose
*/
Long.prototype.or = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return Long.fromBits(this.low | other.low, this.high | other.high, this.unsigned);
};
/**
* Returns the bitwise XOR of this Long and the given one.
* @param {!Long|number|string} other Other Long
* @returns {!Long}
* @expose
*/
Long.prototype.xor = function(other) {
if (!Long.isLong(other))
other = Long.fromValue(other);
return Long.fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned);
};
/**
* Returns this Long with bits shifted to the left by the given amount.
* @param {number|!Long} numBits Number of bits
* @returns {!Long} Shifted Long
* @expose
*/
Long.prototype.shiftLeft = function(numBits) {
if (Long.isLong(numBits))
numBits = numBits.toInt();
if ((numBits &= 63) === 0)
return this;
else if (numBits < 32)
return Long.fromBits(this.low << numBits, (this.high << numBits) | (this.low >>> (32 - numBits)), this.unsigned);
else
return Long.fromBits(0, this.low << (numBits - 32), this.unsigned);
};
/**
* Returns this Long with bits arithmetically shifted to the right by the given amount.
* @param {number|!Long} numBits Number of bits
* @returns {!Long} Shifted Long
* @expose
*/
Long.prototype.shiftRight = function(numBits) {
if (Long.isLong(numBits))
numBits = numBits.toInt();
if ((numBits &= 63) === 0)
return this;
else if (numBits < 32)
return Long.fromBits((this.low >>> numBits) | (this.high << (32 - numBits)), this.high >> numBits, this.unsigned);
else
return Long.fromBits(this.high >> (numBits - 32), this.high >= 0 ? 0 : -1, this.unsigned);
};
/**
* Returns this Long with bits logically shifted to the right by the given amount.
* @param {number|!Long} numBits Number of bits
* @returns {!Long} Shifted Long
* @expose
*/
Long.prototype.shiftRightUnsigned = function(numBits) {
if (Long.isLong(numBits))
numBits = numBits.toInt();
numBits &= 63;
if (numBits === 0)
return this;
else {
var high = this.high;
if (numBits < 32) {
var low = this.low;
return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits, this.unsigned);
} else if (numBits === 32)
return Long.fromBits(high, 0, this.unsigned);
else
return Long.fromBits(high >>> (numBits - 32), 0, this.unsigned);
}
};
/**
* Converts this Long to signed.
* @returns {!Long} Signed long
* @expose
*/
Long.prototype.toSigned = function() {
if (!this.unsigned)
return this;
return new Long(this.low, this.high, false);
};
/**
* Converts this Long to unsigned.
* @returns {!Long} Unsigned long
* @expose
*/
Long.prototype.toUnsigned = function() {
if (this.unsigned)
return this;
return new Long(this.low, this.high, true);
};
/* CommonJS */ if (typeof require === 'function' && typeof module === 'object' && module && typeof exports === 'object' && exports)
module["exports"] = Long;
/* AMD */ else if (typeof define === 'function' && define["amd"])
define(function() { return Long; });
/* Global */ else
(global["dcodeIO"] = global["dcodeIO"] || {})["Long"] = Long;
})(this);
/*
Copyright 2013-2014 Daniel Wirtz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @license ByteBuffer.js (c) 2013-2014 Daniel Wirtz
* This version of ByteBuffer.js uses an ArrayBuffer (AB) as its backing buffer and is compatible with modern browsers.
* Released under the Apache License, Version 2.0
* see: https://github.com/dcodeIO/ByteBuffer.js for details
*/ //
(function(global) {
"use strict";
/**
* @param {function(new: Long, number, number, boolean=)=} Long
* @returns {function(new: ByteBuffer, number=, boolean=, boolean=)}}
* @inner
*/
function loadByteBuffer(Long) {
/**
* Constructs a new ByteBuffer.
* @class The swiss army knife for binary data in JavaScript.
* @exports ByteBuffer
* @constructor
* @param {number=} capacity Initial capacity. Defaults to {@link ByteBuffer.DEFAULT_CAPACITY}.
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @expose
*/
var ByteBuffer = function(capacity, littleEndian, noAssert) {
if (typeof capacity === 'undefined') capacity = ByteBuffer.DEFAULT_CAPACITY;
if (typeof littleEndian === 'undefined') littleEndian = ByteBuffer.DEFAULT_ENDIAN;
if (typeof noAssert === 'undefined') noAssert = ByteBuffer.DEFAULT_NOASSERT;
if (!noAssert) {
capacity = capacity | 0;
if (capacity < 0)
throw RangeError("Illegal capacity");
littleEndian = !!littleEndian;
noAssert = !!noAssert;
}
/**
* Backing buffer.
* @type {!ArrayBuffer}
* @expose
*/
this.buffer = capacity === 0 ? EMPTY_BUFFER : new ArrayBuffer(capacity);
/**
* Data view to manipulate the backing buffer. Becomes `null` if the backing buffer has a capacity of `0`.
* @type {?DataView}
* @expose
*/
this.view = capacity === 0 ? null : new DataView(this.buffer);
/**
* Absolute read/write offset.
* @type {number}
* @expose
* @see ByteBuffer#flip
* @see ByteBuffer#clear
*/
this.offset = 0;
/**
* Marked offset.
* @type {number}
* @expose
* @see ByteBuffer#mark
* @see ByteBuffer#reset
*/
this.markedOffset = -1;
/**
* Absolute limit of the contained data. Set to the backing buffer's capacity upon allocation.
* @type {number}
* @expose
* @see ByteBuffer#flip
* @see ByteBuffer#clear
*/
this.limit = capacity;
/**
* Whether to use little endian byte order, defaults to `false` for big endian.
* @type {boolean}
* @expose
*/
this.littleEndian = typeof littleEndian !== 'undefined' ? !!littleEndian : false;
/**
* Whether to skip assertions of offsets and values, defaults to `false`.
* @type {boolean}
* @expose
*/
this.noAssert = !!noAssert;
};
/**
* ByteBuffer version.
* @type {string}
* @const
* @expose
*/
ByteBuffer.VERSION = "3.5.4";
/**
* Little endian constant that can be used instead of its boolean value. Evaluates to `true`.
* @type {boolean}
* @const
* @expose
*/
ByteBuffer.LITTLE_ENDIAN = true;
/**
* Big endian constant that can be used instead of its boolean value. Evaluates to `false`.
* @type {boolean}
* @const
* @expose
*/
ByteBuffer.BIG_ENDIAN = false;
/**
* Default initial capacity of `16`.
* @type {number}
* @expose
*/
ByteBuffer.DEFAULT_CAPACITY = 16;
/**
* Default endianess of `false` for big endian.
* @type {boolean}
* @expose
*/
ByteBuffer.DEFAULT_ENDIAN = ByteBuffer.BIG_ENDIAN;
/**
* Default no assertions flag of `false`.
* @type {boolean}
* @expose
*/
ByteBuffer.DEFAULT_NOASSERT = false;
/**
* A `Long` class for representing a 64-bit two's-complement integer value. May be `null` if Long.js has not been loaded
* and int64 support is not available.
* @type {?Long}
* @const
* @see https://github.com/dcodeIO/Long.js
* @expose
*/
ByteBuffer.Long = Long || null;
/**
* @alias ByteBuffer.prototype
* @inner
*/
var ByteBufferPrototype = ByteBuffer.prototype;
// helpers
/**
* @type {!ArrayBuffer}
* @inner
*/
var EMPTY_BUFFER = new ArrayBuffer(0);
/**
* String.fromCharCode reference for compile-time renaming.
* @type {function(...number):string}
* @inner
*/
var stringFromCharCode = String.fromCharCode;
/**
* Creates a source function for a string.
* @param {string} s String to read from
* @returns {function():number|null} Source function returning the next char code respectively `null` if there are
* no more characters left.
* @throws {TypeError} If the argument is invalid
* @inner
*/
function stringSource(s) {
var i=0; return function() {
return i < s.length ? s.charCodeAt(i++) : null;
};
}
/**
* Creates a destination function for a string.
* @returns {function(number=):undefined|string} Destination function successively called with the next char code.
* Returns the final string when called without arguments.
* @inner
*/
function stringDestination() {
var cs = [], ps = []; return function() {
if (arguments.length === 0)
return ps.join('')+stringFromCharCode.apply(String, cs);
if (cs.length + arguments.length > 1024)
ps.push(stringFromCharCode.apply(String, cs)),
cs.length = 0;
Array.prototype.push.apply(cs, arguments);
};
}
/**
* Allocates a new ByteBuffer backed by a buffer of the specified capacity.
* @param {number=} capacity Initial capacity. Defaults to {@link ByteBuffer.DEFAULT_CAPACITY}.
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer}
* @expose
*/
ByteBuffer.allocate = function(capacity, littleEndian, noAssert) {
return new ByteBuffer(capacity, littleEndian, noAssert);
};
/**
* Concatenates multiple ByteBuffers into one.
* @param {!Array.} buffers Buffers to concatenate
* @param {(string|boolean)=} encoding String encoding if `buffers` contains a string ("base64", "hex", "binary",
* defaults to "utf8")
* @param {boolean=} littleEndian Whether to use little or big endian byte order for the resulting ByteBuffer. Defaults
* to {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values for the resulting ByteBuffer. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} Concatenated ByteBuffer
* @expose
*/
ByteBuffer.concat = function(buffers, encoding, littleEndian, noAssert) {
if (typeof encoding === 'boolean' || typeof encoding !== 'string') {
noAssert = littleEndian;
littleEndian = encoding;
encoding = undefined;
}
var capacity = 0;
for (var i=0, k=buffers.length, length; i 0) capacity += length;
}
if (capacity === 0)
return new ByteBuffer(0, littleEndian, noAssert);
var bb = new ByteBuffer(capacity, littleEndian, noAssert),
bi;
var view = new Uint8Array(bb.buffer);
i=0; while (i} buffer Anything that can be wrapped
* @param {(string|boolean)=} encoding String encoding if `buffer` is a string ("base64", "hex", "binary", defaults to
* "utf8")
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} A ByteBuffer wrapping `buffer`
* @expose
*/
ByteBuffer.wrap = function(buffer, encoding, littleEndian, noAssert) {
if (typeof encoding !== 'string') {
noAssert = littleEndian;
littleEndian = encoding;
encoding = undefined;
}
if (typeof buffer === 'string') {
if (typeof encoding === 'undefined')
encoding = "utf8";
switch (encoding) {
case "base64":
return ByteBuffer.fromBase64(buffer, littleEndian);
case "hex":
return ByteBuffer.fromHex(buffer, littleEndian);
case "binary":
return ByteBuffer.fromBinary(buffer, littleEndian);
case "utf8":
return ByteBuffer.fromUTF8(buffer, littleEndian);
case "debug":
return ByteBuffer.fromDebug(buffer, littleEndian);
default:
throw Error("Unsupported encoding: "+encoding);
}
}
if (buffer === null || typeof buffer !== 'object')
throw TypeError("Illegal buffer");
var bb;
if (ByteBuffer.isByteBuffer(buffer)) {
bb = ByteBufferPrototype.clone.call(buffer);
bb.markedOffset = -1;
return bb;
}
if (buffer instanceof Uint8Array) { // Extract ArrayBuffer from Uint8Array
bb = new ByteBuffer(0, littleEndian, noAssert);
if (buffer.length > 0) { // Avoid references to more than one EMPTY_BUFFER
bb.buffer = buffer.buffer;
bb.offset = buffer.byteOffset;
bb.limit = buffer.byteOffset + buffer.length;
bb.view = buffer.length > 0 ? new DataView(buffer.buffer) : null;
}
} else if (buffer instanceof ArrayBuffer) { // Reuse ArrayBuffer
bb = new ByteBuffer(0, littleEndian, noAssert);
if (buffer.byteLength > 0) {
bb.buffer = buffer;
bb.offset = 0;
bb.limit = buffer.byteLength;
bb.view = buffer.byteLength > 0 ? new DataView(buffer) : null;
}
} else if (Object.prototype.toString.call(buffer) === "[object Array]") { // Create from octets
bb = new ByteBuffer(buffer.length, littleEndian, noAssert);
bb.limit = buffer.length;
for (i=0; i>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 1;
var capacity0 = this.buffer.byteLength;
if (offset > capacity0)
this.resize((capacity0 *= 2) > offset ? capacity0 : offset);
offset -= 1;
this.view.setInt8(offset, value);
if (relative) this.offset += 1;
return this;
};
/**
* Writes an 8bit signed integer. This is an alias of {@link ByteBuffer#writeInt8}.
* @function
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and advance {@link ByteBuffer#offset} by `1` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeByte = ByteBufferPrototype.writeInt8;
/**
* Reads an 8bit signed integer.
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `1` if omitted.
* @returns {number} Value read
* @expose
*/
ByteBufferPrototype.readInt8 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 1 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+1+") <= "+this.buffer.byteLength);
}
var value = this.view.getInt8(offset);
if (relative) this.offset += 1;
return value;
};
/**
* Reads an 8bit signed integer. This is an alias of {@link ByteBuffer#readInt8}.
* @function
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `1` if omitted.
* @returns {number} Value read
* @expose
*/
ByteBufferPrototype.readByte = ByteBufferPrototype.readInt8;
/**
* Writes an 8bit unsigned integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and advance {@link ByteBuffer#offset} by `1` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeUint8 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value >>>= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 1;
var capacity1 = this.buffer.byteLength;
if (offset > capacity1)
this.resize((capacity1 *= 2) > offset ? capacity1 : offset);
offset -= 1;
this.view.setUint8(offset, value);
if (relative) this.offset += 1;
return this;
};
/**
* Reads an 8bit unsigned integer.
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `1` if omitted.
* @returns {number} Value read
* @expose
*/
ByteBufferPrototype.readUint8 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 1 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+1+") <= "+this.buffer.byteLength);
}
var value = this.view.getUint8(offset);
if (relative) this.offset += 1;
return value;
};
// types/ints/int16
/**
* Writes a 16bit signed integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and advance {@link ByteBuffer#offset} by `2` if omitted.
* @throws {TypeError} If `offset` or `value` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @expose
*/
ByteBufferPrototype.writeInt16 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value |= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 2;
var capacity2 = this.buffer.byteLength;
if (offset > capacity2)
this.resize((capacity2 *= 2) > offset ? capacity2 : offset);
offset -= 2;
this.view.setInt16(offset, value, this.littleEndian);
if (relative) this.offset += 2;
return this;
};
/**
* Writes a 16bit signed integer. This is an alias of {@link ByteBuffer#writeInt16}.
* @function
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and advance {@link ByteBuffer#offset} by `2` if omitted.
* @throws {TypeError} If `offset` or `value` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @expose
*/
ByteBufferPrototype.writeShort = ByteBufferPrototype.writeInt16;
/**
* Reads a 16bit signed integer.
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `2` if omitted.
* @returns {number} Value read
* @throws {TypeError} If `offset` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @expose
*/
ByteBufferPrototype.readInt16 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 2 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+2+") <= "+this.buffer.byteLength);
}
var value = this.view.getInt16(offset, this.littleEndian);
if (relative) this.offset += 2;
return value;
};
/**
* Reads a 16bit signed integer. This is an alias of {@link ByteBuffer#readInt16}.
* @function
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `2` if omitted.
* @returns {number} Value read
* @throws {TypeError} If `offset` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @expose
*/
ByteBufferPrototype.readShort = ByteBufferPrototype.readInt16;
/**
* Writes a 16bit unsigned integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and advance {@link ByteBuffer#offset} by `2` if omitted.
* @throws {TypeError} If `offset` or `value` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @expose
*/
ByteBufferPrototype.writeUint16 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value >>>= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 2;
var capacity3 = this.buffer.byteLength;
if (offset > capacity3)
this.resize((capacity3 *= 2) > offset ? capacity3 : offset);
offset -= 2;
this.view.setUint16(offset, value, this.littleEndian);
if (relative) this.offset += 2;
return this;
};
/**
* Reads a 16bit unsigned integer.
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `2` if omitted.
* @returns {number} Value read
* @throws {TypeError} If `offset` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @expose
*/
ByteBufferPrototype.readUint16 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 2 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+2+") <= "+this.buffer.byteLength);
}
var value = this.view.getUint16(offset, this.littleEndian);
if (relative) this.offset += 2;
return value;
};
// types/ints/int32
/**
* Writes a 32bit signed integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @expose
*/
ByteBufferPrototype.writeInt32 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value |= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 4;
var capacity4 = this.buffer.byteLength;
if (offset > capacity4)
this.resize((capacity4 *= 2) > offset ? capacity4 : offset);
offset -= 4;
this.view.setInt32(offset, value, this.littleEndian);
if (relative) this.offset += 4;
return this;
};
/**
* Writes a 32bit signed integer. This is an alias of {@link ByteBuffer#writeInt32}.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @expose
*/
ByteBufferPrototype.writeInt = ByteBufferPrototype.writeInt32;
/**
* Reads a 32bit signed integer.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @returns {number} Value read
* @expose
*/
ByteBufferPrototype.readInt32 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 4 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+4+") <= "+this.buffer.byteLength);
}
var value = this.view.getInt32(offset, this.littleEndian);
if (relative) this.offset += 4;
return value;
};
/**
* Reads a 32bit signed integer. This is an alias of {@link ByteBuffer#readInt32}.
* @param {number=} offset Offset to read from. Will use and advance {@link ByteBuffer#offset} by `4` if omitted.
* @returns {number} Value read
* @expose
*/
ByteBufferPrototype.readInt = ByteBufferPrototype.readInt32;
/**
* Writes a 32bit unsigned integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @expose
*/
ByteBufferPrototype.writeUint32 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value >>>= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 4;
var capacity5 = this.buffer.byteLength;
if (offset > capacity5)
this.resize((capacity5 *= 2) > offset ? capacity5 : offset);
offset -= 4;
this.view.setUint32(offset, value, this.littleEndian);
if (relative) this.offset += 4;
return this;
};
/**
* Reads a 32bit unsigned integer.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @returns {number} Value read
* @expose
*/
ByteBufferPrototype.readUint32 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 4 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+4+") <= "+this.buffer.byteLength);
}
var value = this.view.getUint32(offset, this.littleEndian);
if (relative) this.offset += 4;
return value;
};
// types/ints/int64
if (Long) {
/**
* Writes a 64bit signed integer.
* @param {number|!Long} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeInt64 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value === 'number')
value = Long.fromNumber(value);
else if (!(value && value instanceof Long))
throw TypeError("Illegal value: "+value+" (not an integer or Long)");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
if (typeof value === 'number')
value = Long.fromNumber(value);
offset += 8;
var capacity6 = this.buffer.byteLength;
if (offset > capacity6)
this.resize((capacity6 *= 2) > offset ? capacity6 : offset);
offset -= 8;
if (this.littleEndian) {
this.view.setInt32(offset , value.low , true);
this.view.setInt32(offset+4, value.high, true);
} else {
this.view.setInt32(offset , value.high, false);
this.view.setInt32(offset+4, value.low , false);
}
if (relative) this.offset += 8;
return this;
};
/**
* Writes a 64bit signed integer. This is an alias of {@link ByteBuffer#writeInt64}.
* @param {number|!Long} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeLong = ByteBufferPrototype.writeInt64;
/**
* Reads a 64bit signed integer.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!Long}
* @expose
*/
ByteBufferPrototype.readInt64 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 8 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+8+") <= "+this.buffer.byteLength);
}
var value = this.littleEndian
? new Long(this.view.getInt32(offset , true ), this.view.getInt32(offset+4, true ), false)
: new Long(this.view.getInt32(offset+4, false), this.view.getInt32(offset , false), false);
if (relative) this.offset += 8;
return value;
};
/**
* Reads a 64bit signed integer. This is an alias of {@link ByteBuffer#readInt64}.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!Long}
* @expose
*/
ByteBufferPrototype.readLong = ByteBufferPrototype.readInt64;
/**
* Writes a 64bit unsigned integer.
* @param {number|!Long} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeUint64 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value === 'number')
value = Long.fromNumber(value);
else if (!(value && value instanceof Long))
throw TypeError("Illegal value: "+value+" (not an integer or Long)");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
if (typeof value === 'number')
value = Long.fromNumber(value);
offset += 8;
var capacity7 = this.buffer.byteLength;
if (offset > capacity7)
this.resize((capacity7 *= 2) > offset ? capacity7 : offset);
offset -= 8;
if (this.littleEndian) {
this.view.setInt32(offset , value.low , true);
this.view.setInt32(offset+4, value.high, true);
} else {
this.view.setInt32(offset , value.high, false);
this.view.setInt32(offset+4, value.low , false);
}
if (relative) this.offset += 8;
return this;
};
/**
* Reads a 64bit unsigned integer.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!Long}
* @expose
*/
ByteBufferPrototype.readUint64 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 8 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+8+") <= "+this.buffer.byteLength);
}
var value = this.littleEndian
? new Long(this.view.getInt32(offset , true ), this.view.getInt32(offset+4, true ), true)
: new Long(this.view.getInt32(offset+4, false), this.view.getInt32(offset , false), true);
if (relative) this.offset += 8;
return value;
};
} // Long
// types/floats/float32
/**
* Writes a 32bit float.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeFloat32 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number')
throw TypeError("Illegal value: "+value+" (not a number)");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 4;
var capacity8 = this.buffer.byteLength;
if (offset > capacity8)
this.resize((capacity8 *= 2) > offset ? capacity8 : offset);
offset -= 4;
this.view.setFloat32(offset, value, this.littleEndian);
if (relative) this.offset += 4;
return this;
};
/**
* Writes a 32bit float. This is an alias of {@link ByteBuffer#writeFloat32}.
* @function
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeFloat = ByteBufferPrototype.writeFloat32;
/**
* Reads a 32bit float.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @returns {number}
* @expose
*/
ByteBufferPrototype.readFloat32 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 4 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+4+") <= "+this.buffer.byteLength);
}
var value = this.view.getFloat32(offset, this.littleEndian);
if (relative) this.offset += 4;
return value;
};
/**
* Reads a 32bit float. This is an alias of {@link ByteBuffer#readFloat32}.
* @function
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `4` if omitted.
* @returns {number}
* @expose
*/
ByteBufferPrototype.readFloat = ByteBufferPrototype.readFloat32;
// types/floats/float64
/**
* Writes a 64bit float.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeFloat64 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number')
throw TypeError("Illegal value: "+value+" (not a number)");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
offset += 8;
var capacity9 = this.buffer.byteLength;
if (offset > capacity9)
this.resize((capacity9 *= 2) > offset ? capacity9 : offset);
offset -= 8;
this.view.setFloat64(offset, value, this.littleEndian);
if (relative) this.offset += 8;
return this;
};
/**
* Writes a 64bit float. This is an alias of {@link ByteBuffer#writeFloat64}.
* @function
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.writeDouble = ByteBufferPrototype.writeFloat64;
/**
* Reads a 64bit float.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {number}
* @expose
*/
ByteBufferPrototype.readFloat64 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 8 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+8+") <= "+this.buffer.byteLength);
}
var value = this.view.getFloat64(offset, this.littleEndian);
if (relative) this.offset += 8;
return value;
};
/**
* Reads a 64bit float. This is an alias of {@link ByteBuffer#readFloat64}.
* @function
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by `8` if omitted.
* @returns {number}
* @expose
*/
ByteBufferPrototype.readDouble = ByteBufferPrototype.readFloat64;
// types/varints/varint32
/**
* Maximum number of bytes required to store a 32bit base 128 variable-length integer.
* @type {number}
* @const
* @expose
*/
ByteBuffer.MAX_VARINT32_BYTES = 5;
/**
* Calculates the actual number of bytes required to store a 32bit base 128 variable-length integer.
* @param {number} value Value to encode
* @returns {number} Number of bytes required. Capped to {@link ByteBuffer.MAX_VARINT32_BYTES}
* @expose
*/
ByteBuffer.calculateVarint32 = function(value) {
// ref: src/google/protobuf/io/coded_stream.cc
value = value >>> 0;
if (value < 1 << 7 ) return 1;
else if (value < 1 << 14) return 2;
else if (value < 1 << 21) return 3;
else if (value < 1 << 28) return 4;
else return 5;
};
/**
* Zigzag encodes a signed 32bit integer so that it can be effectively used with varint encoding.
* @param {number} n Signed 32bit integer
* @returns {number} Unsigned zigzag encoded 32bit integer
* @expose
*/
ByteBuffer.zigZagEncode32 = function(n) {
return (((n |= 0) << 1) ^ (n >> 31)) >>> 0; // ref: src/google/protobuf/wire_format_lite.h
};
/**
* Decodes a zigzag encoded signed 32bit integer.
* @param {number} n Unsigned zigzag encoded 32bit integer
* @returns {number} Signed 32bit integer
* @expose
*/
ByteBuffer.zigZagDecode32 = function(n) {
return ((n >>> 1) ^ -(n & 1)) | 0; // // ref: src/google/protobuf/wire_format_lite.h
};
/**
* Writes a 32bit base 128 variable-length integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {!ByteBuffer|number} this if `offset` is omitted, else the actual number of bytes written
* @expose
*/
ByteBufferPrototype.writeVarint32 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value |= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
var size = ByteBuffer.calculateVarint32(value),
b;
offset += size;
var capacity10 = this.buffer.byteLength;
if (offset > capacity10)
this.resize((capacity10 *= 2) > offset ? capacity10 : offset);
offset -= size;
// ref: http://code.google.com/searchframe#WTeibokF6gE/trunk/src/google/protobuf/io/coded_stream.cc
this.view.setUint8(offset, b = value | 0x80);
value >>>= 0;
if (value >= 1 << 7) {
b = (value >> 7) | 0x80;
this.view.setUint8(offset+1, b);
if (value >= 1 << 14) {
b = (value >> 14) | 0x80;
this.view.setUint8(offset+2, b);
if (value >= 1 << 21) {
b = (value >> 21) | 0x80;
this.view.setUint8(offset+3, b);
if (value >= 1 << 28) {
this.view.setUint8(offset+4, (value >> 28) & 0x0F);
size = 5;
} else {
this.view.setUint8(offset+3, b & 0x7F);
size = 4;
}
} else {
this.view.setUint8(offset+2, b & 0x7F);
size = 3;
}
} else {
this.view.setUint8(offset+1, b & 0x7F);
size = 2;
}
} else {
this.view.setUint8(offset, b & 0x7F);
size = 1;
}
if (relative) {
this.offset += size;
return this;
}
return size;
};
/**
* Writes a zig-zag encoded 32bit base 128 variable-length integer.
* @param {number} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {!ByteBuffer|number} this if `offset` is omitted, else the actual number of bytes written
* @expose
*/
ByteBufferPrototype.writeVarint32ZigZag = function(value, offset) {
return this.writeVarint32(ByteBuffer.zigZagEncode32(value), offset);
};
/**
* Reads a 32bit base 128 variable-length integer.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {number|!{value: number, length: number}} The value read if offset is omitted, else the value read
* and the actual number of bytes read.
* @throws {Error} If it's not a valid varint. Has a property `truncated = true` if there is not enough data available
* to fully decode the varint.
* @expose
*/
ByteBufferPrototype.readVarint32 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 1 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+1+") <= "+this.buffer.byteLength);
}
// ref: src/google/protobuf/io/coded_stream.cc
var size = 0,
value = 0 >>> 0,
temp,
ioffset;
do {
ioffset = offset+size;
if (!this.noAssert && ioffset > this.limit) {
var err = Error("Truncated");
err['truncated'] = true;
throw err;
}
temp = this.view.getUint8(ioffset);
if (size < 5)
value |= ((temp&0x7F)<<(7*size)) >>> 0;
++size;
} while ((temp & 0x80) === 0x80);
value = value | 0; // Make sure to discard the higher order bits
if (relative) {
this.offset += size;
return value;
}
return {
"value": value,
"length": size
};
};
/**
* Reads a zig-zag encoded 32bit base 128 variable-length integer.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {number|!{value: number, length: number}} The value read if offset is omitted, else the value read
* and the actual number of bytes read.
* @throws {Error} If it's not a valid varint
* @expose
*/
ByteBufferPrototype.readVarint32ZigZag = function(offset) {
var val = this.readVarint32(offset);
if (typeof val === 'object')
val["value"] = ByteBuffer.zigZagDecode32(val["value"]);
else
val = ByteBuffer.zigZagDecode32(val);
return val;
};
// types/varints/varint64
if (Long) {
/**
* Maximum number of bytes required to store a 64bit base 128 variable-length integer.
* @type {number}
* @const
* @expose
*/
ByteBuffer.MAX_VARINT64_BYTES = 10;
/**
* Calculates the actual number of bytes required to store a 64bit base 128 variable-length integer.
* @param {number|!Long} value Value to encode
* @returns {number} Number of bytes required. Capped to {@link ByteBuffer.MAX_VARINT64_BYTES}
* @expose
*/
ByteBuffer.calculateVarint64 = function(value) {
if (typeof value === 'number')
value = Long.fromNumber(value);
// ref: src/google/protobuf/io/coded_stream.cc
var part0 = value.toInt() >>> 0,
part1 = value.shiftRightUnsigned(28).toInt() >>> 0,
part2 = value.shiftRightUnsigned(56).toInt() >>> 0;
if (part2 == 0) {
if (part1 == 0) {
if (part0 < 1 << 14)
return part0 < 1 << 7 ? 1 : 2;
else
return part0 < 1 << 21 ? 3 : 4;
} else {
if (part1 < 1 << 14)
return part1 < 1 << 7 ? 5 : 6;
else
return part1 < 1 << 21 ? 7 : 8;
}
} else
return part2 < 1 << 7 ? 9 : 10;
};
/**
* Zigzag encodes a signed 64bit integer so that it can be effectively used with varint encoding.
* @param {number|!Long} value Signed long
* @returns {!Long} Unsigned zigzag encoded long
* @expose
*/
ByteBuffer.zigZagEncode64 = function(value) {
if (typeof value === 'number')
value = Long.fromNumber(value, false);
else if (value.unsigned !== false) value = value.toSigned();
// ref: src/google/protobuf/wire_format_lite.h
return value.shiftLeft(1).xor(value.shiftRight(63)).toUnsigned();
};
/**
* Decodes a zigzag encoded signed 64bit integer.
* @param {!Long|number} value Unsigned zigzag encoded long or JavaScript number
* @returns {!Long} Signed long
* @expose
*/
ByteBuffer.zigZagDecode64 = function(value) {
if (typeof value === 'number')
value = Long.fromNumber(value, false);
else if (value.unsigned !== false) value = value.toSigned();
// ref: src/google/protobuf/wire_format_lite.h
return value.shiftRightUnsigned(1).xor(value.and(Long.ONE).toSigned().negate()).toSigned();
};
/**
* Writes a 64bit base 128 variable-length integer.
* @param {number|Long} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {!ByteBuffer|number} `this` if offset is omitted, else the actual number of bytes written.
* @expose
*/
ByteBufferPrototype.writeVarint64 = function(value, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof value === 'number')
value = Long.fromNumber(value);
else if (!(value && value instanceof Long))
throw TypeError("Illegal value: "+value+" (not an integer or Long)");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
if (typeof value === 'number')
value = Long.fromNumber(value, false);
else if (value.unsigned !== false) value = value.toSigned();
var size = ByteBuffer.calculateVarint64(value),
part0 = value.toInt() >>> 0,
part1 = value.shiftRightUnsigned(28).toInt() >>> 0,
part2 = value.shiftRightUnsigned(56).toInt() >>> 0;
offset += size;
var capacity11 = this.buffer.byteLength;
if (offset > capacity11)
this.resize((capacity11 *= 2) > offset ? capacity11 : offset);
offset -= size;
switch (size) {
case 10: this.view.setUint8(offset+9, (part2 >>> 7) & 0x01);
case 9 : this.view.setUint8(offset+8, size !== 9 ? (part2 ) | 0x80 : (part2 ) & 0x7F);
case 8 : this.view.setUint8(offset+7, size !== 8 ? (part1 >>> 21) | 0x80 : (part1 >>> 21) & 0x7F);
case 7 : this.view.setUint8(offset+6, size !== 7 ? (part1 >>> 14) | 0x80 : (part1 >>> 14) & 0x7F);
case 6 : this.view.setUint8(offset+5, size !== 6 ? (part1 >>> 7) | 0x80 : (part1 >>> 7) & 0x7F);
case 5 : this.view.setUint8(offset+4, size !== 5 ? (part1 ) | 0x80 : (part1 ) & 0x7F);
case 4 : this.view.setUint8(offset+3, size !== 4 ? (part0 >>> 21) | 0x80 : (part0 >>> 21) & 0x7F);
case 3 : this.view.setUint8(offset+2, size !== 3 ? (part0 >>> 14) | 0x80 : (part0 >>> 14) & 0x7F);
case 2 : this.view.setUint8(offset+1, size !== 2 ? (part0 >>> 7) | 0x80 : (part0 >>> 7) & 0x7F);
case 1 : this.view.setUint8(offset , size !== 1 ? (part0 ) | 0x80 : (part0 ) & 0x7F);
}
if (relative) {
this.offset += size;
return this;
} else {
return size;
}
};
/**
* Writes a zig-zag encoded 64bit base 128 variable-length integer.
* @param {number|Long} value Value to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {!ByteBuffer|number} `this` if offset is omitted, else the actual number of bytes written.
* @expose
*/
ByteBufferPrototype.writeVarint64ZigZag = function(value, offset) {
return this.writeVarint64(ByteBuffer.zigZagEncode64(value), offset);
};
/**
* Reads a 64bit base 128 variable-length integer. Requires Long.js.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {!Long|!{value: Long, length: number}} The value read if offset is omitted, else the value read and
* the actual number of bytes read.
* @throws {Error} If it's not a valid varint
* @expose
*/
ByteBufferPrototype.readVarint64 = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 1 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+1+") <= "+this.buffer.byteLength);
}
// ref: src/google/protobuf/io/coded_stream.cc
var start = offset,
part0 = 0,
part1 = 0,
part2 = 0,
b = 0;
b = this.view.getUint8(offset++); part0 = (b & 0x7F) ; if (b & 0x80) {
b = this.view.getUint8(offset++); part0 |= (b & 0x7F) << 7; if (b & 0x80) {
b = this.view.getUint8(offset++); part0 |= (b & 0x7F) << 14; if (b & 0x80) {
b = this.view.getUint8(offset++); part0 |= (b & 0x7F) << 21; if (b & 0x80) {
b = this.view.getUint8(offset++); part1 = (b & 0x7F) ; if (b & 0x80) {
b = this.view.getUint8(offset++); part1 |= (b & 0x7F) << 7; if (b & 0x80) {
b = this.view.getUint8(offset++); part1 |= (b & 0x7F) << 14; if (b & 0x80) {
b = this.view.getUint8(offset++); part1 |= (b & 0x7F) << 21; if (b & 0x80) {
b = this.view.getUint8(offset++); part2 = (b & 0x7F) ; if (b & 0x80) {
b = this.view.getUint8(offset++); part2 |= (b & 0x7F) << 7; if (b & 0x80) {
throw Error("Buffer overrun"); }}}}}}}}}}
var value = Long.fromBits(part0 | (part1 << 28), (part1 >>> 4) | (part2) << 24, false);
if (relative) {
this.offset = offset;
return value;
} else {
return {
'value': value,
'length': offset-start
};
}
};
/**
* Reads a zig-zag encoded 64bit base 128 variable-length integer. Requires Long.js.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {!Long|!{value: Long, length: number}} The value read if offset is omitted, else the value read and
* the actual number of bytes read.
* @throws {Error} If it's not a valid varint
* @expose
*/
ByteBufferPrototype.readVarint64ZigZag = function(offset) {
var val = this.readVarint64(offset);
if (val && val['value'] instanceof Long)
val["value"] = ByteBuffer.zigZagDecode64(val["value"]);
else
val = ByteBuffer.zigZagDecode64(val);
return val;
};
} // Long
// types/strings/cstring
/**
* Writes a NULL-terminated UTF8 encoded string. For this to work the specified string must not contain any NULL
* characters itself.
* @param {string} str String to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* contained in `str` + 1 if omitted.
* @returns {!ByteBuffer|number} this if offset is omitted, else the actual number of bytes written
* @expose
*/
ByteBufferPrototype.writeCString = function(str, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
var i,
k = str.length;
if (!this.noAssert) {
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
for (i=0; i>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
var start = offset;
// UTF8 strings do not contain zero bytes in between except for the zero character, so:
k = utfx.calculateUTF16asUTF8(stringSource(str))[1];
offset += k+1;
var capacity12 = this.buffer.byteLength;
if (offset > capacity12)
this.resize((capacity12 *= 2) > offset ? capacity12 : offset);
offset -= k+1;
utfx.encodeUTF16toUTF8(stringSource(str), function(b) {
this.view.setUint8(offset++, b);
}.bind(this));
this.view.setUint8(offset++, 0);
if (relative) {
this.offset = offset - start;
return this;
}
return k;
};
/**
* Reads a NULL-terminated UTF8 encoded string. For this to work the string read must not contain any NULL characters
* itself.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {string|!{string: string, length: number}} The string read if offset is omitted, else the string
* read and the actual number of bytes read.
* @expose
*/
ByteBufferPrototype.readCString = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 1 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+1+") <= "+this.buffer.byteLength);
}
var start = offset,
temp;
// UTF8 strings do not contain zero bytes in between except for the zero character itself, so:
var sd, b = -1;
utfx.decodeUTF8toUTF16(function() {
if (b === 0) return null;
if (offset >= this.limit)
throw RangeError("Illegal range: Truncated data, "+offset+" < "+this.limit);
return (b = this.view.getUint8(offset++)) === 0 ? null : b;
}.bind(this), sd = stringDestination(), true);
if (relative) {
this.offset = offset;
return sd();
} else {
return {
"string": sd(),
"length": offset - start
};
}
};
// types/strings/istring
/**
* Writes a length as uint32 prefixed UTF8 encoded string.
* @param {string} str String to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {!ByteBuffer|number} `this` if `offset` is omitted, else the actual number of bytes written
* @expose
* @see ByteBuffer#writeVarint32
*/
ByteBufferPrototype.writeIString = function(str, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
var start = offset,
k;
k = utfx.calculateUTF16asUTF8(stringSource(str), this.noAssert)[1];
offset += 4+k;
var capacity13 = this.buffer.byteLength;
if (offset > capacity13)
this.resize((capacity13 *= 2) > offset ? capacity13 : offset);
offset -= 4+k;
this.view.setUint32(offset, k, this.littleEndian);
offset += 4;
utfx.encodeUTF16toUTF8(stringSource(str), function(b) {
this.view.setUint8(offset++, b);
}.bind(this));
if (offset !== start + 4 + k)
throw RangeError("Illegal range: Truncated data, "+offset+" == "+(offset+4+k));
if (relative) {
this.offset = offset;
return this;
}
return offset - start;
};
/**
* Reads a length as uint32 prefixed UTF8 encoded string.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {string|!{string: string, length: number}} The string read if offset is omitted, else the string
* read and the actual number of bytes read.
* @expose
* @see ByteBuffer#readVarint32
*/
ByteBufferPrototype.readIString = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 4 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+4+") <= "+this.buffer.byteLength);
}
var temp = 0,
start = offset,
str;
temp = this.view.getUint32(offset, this.littleEndian);
offset += 4;
var k = offset + temp,
sd;
utfx.decodeUTF8toUTF16(function() {
return offset < k ? this.view.getUint8(offset++) : null;
}.bind(this), sd = stringDestination(), this.noAssert);
str = sd();
if (relative) {
this.offset = offset;
return str;
} else {
return {
'string': str,
'length': offset - start
};
}
};
// types/strings/utf8string
/**
* Metrics representing number of UTF8 characters. Evaluates to `c`.
* @type {string}
* @const
* @expose
*/
ByteBuffer.METRICS_CHARS = 'c';
/**
* Metrics representing number of bytes. Evaluates to `b`.
* @type {string}
* @const
* @expose
*/
ByteBuffer.METRICS_BYTES = 'b';
/**
* Writes an UTF8 encoded string.
* @param {string} str String to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} if omitted.
* @returns {!ByteBuffer|number} this if offset is omitted, else the actual number of bytes written.
* @expose
*/
ByteBufferPrototype.writeUTF8String = function(str, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
var k;
var start = offset;
k = utfx.calculateUTF16asUTF8(stringSource(str))[1];
offset += k;
var capacity14 = this.buffer.byteLength;
if (offset > capacity14)
this.resize((capacity14 *= 2) > offset ? capacity14 : offset);
offset -= k;
utfx.encodeUTF16toUTF8(stringSource(str), function(b) {
this.view.setUint8(offset++, b);
}.bind(this));
if (relative) {
this.offset = offset;
return this;
}
return offset - start;
};
/**
* Writes an UTF8 encoded string. This is an alias of {@link ByteBuffer#writeUTF8String}.
* @function
* @param {string} str String to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} if omitted.
* @returns {!ByteBuffer|number} this if offset is omitted, else the actual number of bytes written.
* @expose
*/
ByteBufferPrototype.writeString = ByteBufferPrototype.writeUTF8String;
/**
* Calculates the number of UTF8 characters of a string. JavaScript itself uses UTF-16, so that a string's
* `length` property does not reflect its actual UTF8 size if it contains code points larger than 0xFFFF.
* @function
* @param {string} str String to calculate
* @returns {number} Number of UTF8 characters
* @expose
*/
ByteBuffer.calculateUTF8Chars = function(str) {
return utfx.calculateUTF16asUTF8(stringSource(str))[0];
};
/**
* Calculates the number of UTF8 bytes of a string.
* @function
* @param {string} str String to calculate
* @returns {number} Number of UTF8 bytes
* @expose
*/
ByteBuffer.calculateUTF8Bytes = function(str) {
return utfx.calculateUTF16asUTF8(stringSource(str))[1];
};
/**
* Reads an UTF8 encoded string.
* @param {number} length Number of characters or bytes to read.
* @param {string=} metrics Metrics specifying what `length` is meant to count. Defaults to
* {@link ByteBuffer.METRICS_CHARS}.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {string|!{string: string, length: number}} The string read if offset is omitted, else the string
* read and the actual number of bytes read.
* @expose
*/
ByteBufferPrototype.readUTF8String = function(length, metrics, offset) {
if (typeof metrics === 'number') {
offset = metrics;
metrics = undefined;
}
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (typeof metrics === 'undefined') metrics = ByteBuffer.METRICS_CHARS;
if (!this.noAssert) {
if (typeof length !== 'number' || length % 1 !== 0)
throw TypeError("Illegal length: "+length+" (not an integer)");
length |= 0;
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
var i = 0,
start = offset,
sd;
if (metrics === ByteBuffer.METRICS_CHARS) { // The same for node and the browser
sd = stringDestination();
utfx.decodeUTF8(function() {
return i < length && offset < this.limit ? this.view.getUint8(offset++) : null;
}.bind(this), function(cp) {
++i; utfx.UTF8toUTF16(cp, sd);
}.bind(this));
if (i !== length)
throw RangeError("Illegal range: Truncated data, "+i+" == "+length);
if (relative) {
this.offset = offset;
return sd();
} else {
return {
"string": sd(),
"length": offset - start
};
}
} else if (metrics === ByteBuffer.METRICS_BYTES) {
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + length > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+length+") <= "+this.buffer.byteLength);
}
var k = offset + length;
utfx.decodeUTF8toUTF16(function() {
return offset < k ? this.view.getUint8(offset++) : null;
}.bind(this), sd = stringDestination(), this.noAssert);
if (offset !== k)
throw RangeError("Illegal range: Truncated data, "+offset+" == "+k);
if (relative) {
this.offset = offset;
return sd();
} else {
return {
'string': sd(),
'length': offset - start
};
}
} else
throw TypeError("Unsupported metrics: "+metrics);
};
/**
* Reads an UTF8 encoded string. This is an alias of {@link ByteBuffer#readUTF8String}.
* @function
* @param {number} length Number of characters or bytes to read
* @param {number=} metrics Metrics specifying what `n` is meant to count. Defaults to
* {@link ByteBuffer.METRICS_CHARS}.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {string|!{string: string, length: number}} The string read if offset is omitted, else the string
* read and the actual number of bytes read.
* @expose
*/
ByteBufferPrototype.readString = ByteBufferPrototype.readUTF8String;
// types/strings/vstring
/**
* Writes a length as varint32 prefixed UTF8 encoded string.
* @param {string} str String to write
* @param {number=} offset Offset to write to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted.
* @returns {!ByteBuffer|number} `this` if `offset` is omitted, else the actual number of bytes written
* @expose
* @see ByteBuffer#writeVarint32
*/
ByteBufferPrototype.writeVString = function(str, offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
var start = offset,
k, l;
k = utfx.calculateUTF16asUTF8(stringSource(str), this.noAssert)[1];
l = ByteBuffer.calculateVarint32(k);
offset += l+k;
var capacity15 = this.buffer.byteLength;
if (offset > capacity15)
this.resize((capacity15 *= 2) > offset ? capacity15 : offset);
offset -= l+k;
offset += this.writeVarint32(k, offset);
utfx.encodeUTF16toUTF8(stringSource(str), function(b) {
this.view.setUint8(offset++, b);
}.bind(this));
if (offset !== start+k+l)
throw RangeError("Illegal range: Truncated data, "+offset+" == "+(offset+k+l));
if (relative) {
this.offset = offset;
return this;
}
return offset - start;
};
/**
* Reads a length as varint32 prefixed UTF8 encoded string.
* @param {number=} offset Offset to read from. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {string|!{string: string, length: number}} The string read if offset is omitted, else the string
* read and the actual number of bytes read.
* @expose
* @see ByteBuffer#readVarint32
*/
ByteBufferPrototype.readVString = function(offset) {
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 1 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+1+") <= "+this.buffer.byteLength);
}
var temp = this.readVarint32(offset),
start = offset,
str;
offset += temp['length'];
temp = temp['value'];
var k = offset + temp,
sd = stringDestination();
utfx.decodeUTF8toUTF16(function() {
return offset < k ? this.view.getUint8(offset++) : null;
}.bind(this), sd, this.noAssert);
str = sd();
if (relative) {
this.offset = offset;
return str;
} else {
return {
'string': str,
'length': offset - start
};
}
};
/**
* Appends some data to this ByteBuffer. This will overwrite any contents behind the specified offset up to the appended
* data's length.
* @param {!ByteBuffer|!ArrayBuffer|!Uint8Array|string} source Data to append. If `source` is a ByteBuffer, its offsets
* will be modified according to the performed read operation.
* @param {(string|number)=} encoding Encoding if `data` is a string ("base64", "hex", "binary", defaults to "utf8")
* @param {number=} offset Offset to append at. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {!ByteBuffer} this
* @expose
* @example A relative `<01 02>03.append(<04 05>)` will result in `<01 02 04 05>, 04 05|`
* @example An absolute `<01 02>03.append(04 05>, 1)` will result in `<01 04>05, 04 05|`
*/
ByteBufferPrototype.append = function(source, encoding, offset) {
if (typeof encoding === 'number' || typeof encoding !== 'string') {
offset = encoding;
encoding = undefined;
}
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
if (!(source instanceof ByteBuffer))
source = ByteBuffer.wrap(source, encoding);
var length = source.limit - source.offset;
if (length <= 0) return this; // Nothing to append
offset += length;
var capacity16 = this.buffer.byteLength;
if (offset > capacity16)
this.resize((capacity16 *= 2) > offset ? capacity16 : offset);
offset -= length;
new Uint8Array(this.buffer, offset).set(new Uint8Array(source.buffer).subarray(source.offset, source.limit));
source.offset += length;
if (relative) this.offset += length;
return this;
};
/**
* Appends this ByteBuffer's contents to another ByteBuffer. This will overwrite any contents behind the specified
* offset up to the length of this ByteBuffer's data.
* @param {!ByteBuffer} target Target ByteBuffer
* @param {number=} offset Offset to append to. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* read if omitted.
* @returns {!ByteBuffer} this
* @expose
* @see ByteBuffer#append
*/
ByteBufferPrototype.appendTo = function(target, offset) {
target.append(this, offset);
return this;
};
/**
* Enables or disables assertions of argument types and offsets. Assertions are enabled by default but you can opt to
* disable them if your code already makes sure that everything is valid.
* @param {boolean} assert `true` to enable assertions, otherwise `false`
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.assert = function(assert) {
this.noAssert = !assert;
return this;
};
/**
* Gets the capacity of this ByteBuffer's backing buffer.
* @returns {number} Capacity of the backing buffer
* @expose
*/
ByteBufferPrototype.capacity = function() {
return this.buffer.byteLength;
};
/**
* Clears this ByteBuffer's offsets by setting {@link ByteBuffer#offset} to `0` and {@link ByteBuffer#limit} to the
* backing buffer's capacity. Discards {@link ByteBuffer#markedOffset}.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.clear = function() {
this.offset = 0;
this.limit = this.buffer.byteLength;
this.markedOffset = -1;
return this;
};
/**
* Creates a cloned instance of this ByteBuffer, preset with this ByteBuffer's values for {@link ByteBuffer#offset},
* {@link ByteBuffer#markedOffset} and {@link ByteBuffer#limit}.
* @param {boolean=} copy Whether to copy the backing buffer or to return another view on the same, defaults to `false`
* @returns {!ByteBuffer} Cloned instance
* @expose
*/
ByteBufferPrototype.clone = function(copy) {
var bb = new ByteBuffer(0, this.littleEndian, this.noAssert);
if (copy) {
var buffer = new ArrayBuffer(this.buffer.byteLength);
new Uint8Array(buffer).set(this.buffer);
bb.buffer = buffer;
bb.view = new DataView(buffer);
} else {
bb.buffer = this.buffer;
bb.view = this.view;
}
bb.offset = this.offset;
bb.markedOffset = this.markedOffset;
bb.limit = this.limit;
return bb;
};
/**
* Compacts this ByteBuffer to be backed by a {@link ByteBuffer#buffer} of its contents' length. Contents are the bytes
* between {@link ByteBuffer#offset} and {@link ByteBuffer#limit}. Will set `offset = 0` and `limit = capacity` and
* adapt {@link ByteBuffer#markedOffset} to the same relative position if set.
* @param {number=} begin Offset to start at, defaults to {@link ByteBuffer#offset}
* @param {number=} end Offset to end at, defaults to {@link ByteBuffer#limit}
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.compact = function(begin, end) {
if (typeof begin === 'undefined') begin = this.offset;
if (typeof end === 'undefined') end = this.limit;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
if (begin === 0 && end === this.buffer.byteLength)
return this; // Already compacted
var len = end - begin;
if (len === 0) {
this.buffer = EMPTY_BUFFER;
this.view = null;
if (this.markedOffset >= 0) this.markedOffset -= begin;
this.offset = 0;
this.limit = 0;
return this;
}
var buffer = new ArrayBuffer(len);
new Uint8Array(buffer).set(new Uint8Array(this.buffer).subarray(begin, end));
this.buffer = buffer;
this.view = new DataView(buffer);
if (this.markedOffset >= 0) this.markedOffset -= begin;
this.offset = 0;
this.limit = len;
return this;
};
/**
* Creates a copy of this ByteBuffer's contents. Contents are the bytes between {@link ByteBuffer#offset} and
* {@link ByteBuffer#limit}.
* @param {number=} begin Begin offset, defaults to {@link ByteBuffer#offset}.
* @param {number=} end End offset, defaults to {@link ByteBuffer#limit}.
* @returns {!ByteBuffer} Copy
* @expose
*/
ByteBufferPrototype.copy = function(begin, end) {
if (typeof begin === 'undefined') begin = this.offset;
if (typeof end === 'undefined') end = this.limit;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
if (begin === end)
return new ByteBuffer(0, this.littleEndian, this.noAssert);
var capacity = end - begin,
bb = new ByteBuffer(capacity, this.littleEndian, this.noAssert);
bb.offset = 0;
bb.limit = capacity;
if (bb.markedOffset >= 0) bb.markedOffset -= begin;
this.copyTo(bb, 0, begin, end);
return bb;
};
/**
* Copies this ByteBuffer's contents to another ByteBuffer. Contents are the bytes between {@link ByteBuffer#offset} and
* {@link ByteBuffer#limit}.
* @param {!ByteBuffer} target Target ByteBuffer
* @param {number=} targetOffset Offset to copy to. Will use and increase the target's {@link ByteBuffer#offset}
* by the number of bytes copied if omitted.
* @param {number=} sourceOffset Offset to start copying from. Will use and increase {@link ByteBuffer#offset} by the
* number of bytes copied if omitted.
* @param {number=} sourceLimit Offset to end copying from, defaults to {@link ByteBuffer#limit}
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.copyTo = function(target, targetOffset, sourceOffset, sourceLimit) {
var relative,
targetRelative;
if (!this.noAssert) {
if (!ByteBuffer.isByteBuffer(target))
throw TypeError("Illegal target: Not a ByteBuffer");
}
targetOffset = (targetRelative = typeof targetOffset === 'undefined') ? target.offset : targetOffset | 0;
sourceOffset = (relative = typeof sourceOffset === 'undefined') ? this.offset : sourceOffset | 0;
sourceLimit = typeof sourceLimit === 'undefined' ? this.limit : sourceLimit | 0;
if (targetOffset < 0 || targetOffset > target.buffer.byteLength)
throw RangeError("Illegal target range: 0 <= "+targetOffset+" <= "+target.buffer.byteLength);
if (sourceOffset < 0 || sourceLimit > this.buffer.byteLength)
throw RangeError("Illegal source range: 0 <= "+sourceOffset+" <= "+this.buffer.byteLength);
var len = sourceLimit - sourceOffset;
if (len === 0)
return target; // Nothing to copy
target.ensureCapacity(targetOffset + len);
new Uint8Array(target.buffer).set(new Uint8Array(this.buffer).subarray(sourceOffset, sourceLimit), targetOffset);
if (relative) this.offset += len;
if (targetRelative) target.offset += len;
return this;
};
/**
* Makes sure that this ByteBuffer is backed by a {@link ByteBuffer#buffer} of at least the specified capacity. If the
* current capacity is exceeded, it will be doubled. If double the current capacity is less than the required capacity,
* the required capacity will be used instead.
* @param {number} capacity Required capacity
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.ensureCapacity = function(capacity) {
var current = this.buffer.byteLength;
if (current < capacity)
return this.resize((current *= 2) > capacity ? current : capacity);
return this;
};
/**
* Overwrites this ByteBuffer's contents with the specified value. Contents are the bytes between
* {@link ByteBuffer#offset} and {@link ByteBuffer#limit}.
* @param {number|string} value Byte value to fill with. If given as a string, the first character is used.
* @param {number=} begin Begin offset. Will use and increase {@link ByteBuffer#offset} by the number of bytes
* written if omitted. defaults to {@link ByteBuffer#offset}.
* @param {number=} end End offset, defaults to {@link ByteBuffer#limit}.
* @returns {!ByteBuffer} this
* @expose
* @example `someByteBuffer.clear().fill(0)` fills the entire backing buffer with zeroes
*/
ByteBufferPrototype.fill = function(value, begin, end) {
var relative = typeof begin === 'undefined';
if (relative) begin = this.offset;
if (typeof value === 'string' && value.length > 0)
value = value.charCodeAt(0);
if (typeof begin === 'undefined') begin = this.offset;
if (typeof end === 'undefined') end = this.limit;
if (!this.noAssert) {
if (typeof value !== 'number' || value % 1 !== 0)
throw TypeError("Illegal value: "+value+" (not an integer)");
value |= 0;
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
if (begin >= end)
return this; // Nothing to fill
while (begin < end) this.view.setUint8(begin++, value);
if (relative) this.offset = begin;
return this;
};
/**
* Makes this ByteBuffer ready for a new sequence of write or relative read operations. Sets `limit = offset` and
* `offset = 0`. Make sure always to flip a ByteBuffer when all relative read or write operations are complete.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.flip = function() {
this.limit = this.offset;
this.offset = 0;
return this;
};
/**
* Marks an offset on this ByteBuffer to be used later.
* @param {number=} offset Offset to mark. Defaults to {@link ByteBuffer#offset}.
* @returns {!ByteBuffer} this
* @throws {TypeError} If `offset` is not a valid number
* @throws {RangeError} If `offset` is out of bounds
* @see ByteBuffer#reset
* @expose
*/
ByteBufferPrototype.mark = function(offset) {
offset = typeof offset === 'undefined' ? this.offset : offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
this.markedOffset = offset;
return this;
};
/**
* Sets the byte order.
* @param {boolean} littleEndian `true` for little endian byte order, `false` for big endian
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.order = function(littleEndian) {
if (!this.noAssert) {
if (typeof littleEndian !== 'boolean')
throw TypeError("Illegal littleEndian: Not a boolean");
}
this.littleEndian = !!littleEndian;
return this;
};
/**
* Switches (to) little endian byte order.
* @param {boolean=} littleEndian Defaults to `true`, otherwise uses big endian
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.LE = function(littleEndian) {
this.littleEndian = typeof littleEndian !== 'undefined' ? !!littleEndian : true;
return this;
};
/**
* Switches (to) big endian byte order.
* @param {boolean=} bigEndian Defaults to `true`, otherwise uses little endian
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.BE = function(bigEndian) {
this.littleEndian = typeof bigEndian !== 'undefined' ? !bigEndian : false;
return this;
};
/**
* Prepends some data to this ByteBuffer. This will overwrite any contents before the specified offset up to the
* prepended data's length. If there is not enough space available before the specified `offset`, the backing buffer
* will be resized and its contents moved accordingly.
* @param {!ByteBuffer|string|!ArrayBuffer} source Data to prepend. If `source` is a ByteBuffer, its offset will be
* modified according to the performed read operation.
* @param {(string|number)=} encoding Encoding if `data` is a string ("base64", "hex", "binary", defaults to "utf8")
* @param {number=} offset Offset to prepend at. Will use and decrease {@link ByteBuffer#offset} by the number of bytes
* prepended if omitted.
* @returns {!ByteBuffer} this
* @expose
* @example A relative `00<01 02 03>.prepend(<04 05>)` results in `<04 05 01 02 03>, 04 05|`
* @example An absolute `00<01 02 03>.prepend(<04 05>, 2)` results in `04<05 02 03>, 04 05|`
*/
ByteBufferPrototype.prepend = function(source, encoding, offset) {
if (typeof encoding === 'number' || typeof encoding !== 'string') {
offset = encoding;
encoding = undefined;
}
var relative = typeof offset === 'undefined';
if (relative) offset = this.offset;
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: "+offset+" (not an integer)");
offset >>>= 0;
if (offset < 0 || offset + 0 > this.buffer.byteLength)
throw RangeError("Illegal offset: 0 <= "+offset+" (+"+0+") <= "+this.buffer.byteLength);
}
if (!(source instanceof ByteBuffer))
source = ByteBuffer.wrap(source, encoding);
var len = source.limit - source.offset;
if (len <= 0) return this; // Nothing to prepend
var diff = len - offset;
var arrayView;
if (diff > 0) { // Not enough space before offset, so resize + move
var buffer = new ArrayBuffer(this.buffer.byteLength + diff);
arrayView = new Uint8Array(buffer);
arrayView.set(new Uint8Array(this.buffer).subarray(offset, this.buffer.byteLength), len);
this.buffer = buffer;
this.view = new DataView(buffer);
this.offset += diff;
if (this.markedOffset >= 0) this.markedOffset += diff;
this.limit += diff;
offset += diff;
} else {
arrayView = new Uint8Array(this.buffer);
}
arrayView.set(new Uint8Array(source.buffer).subarray(source.offset, source.limit), offset - len);
source.offset = source.limit;
if (relative)
this.offset -= len;
return this;
};
/**
* Prepends this ByteBuffer to another ByteBuffer. This will overwrite any contents before the specified offset up to the
* prepended data's length. If there is not enough space available before the specified `offset`, the backing buffer
* will be resized and its contents moved accordingly.
* @param {!ByteBuffer} target Target ByteBuffer
* @param {number=} offset Offset to prepend at. Will use and decrease {@link ByteBuffer#offset} by the number of bytes
* prepended if omitted.
* @returns {!ByteBuffer} this
* @expose
* @see ByteBuffer#prepend
*/
ByteBufferPrototype.prependTo = function(target, offset) {
target.prepend(this, offset);
return this;
};
/**
* Prints debug information about this ByteBuffer's contents.
* @param {function(string)=} out Output function to call, defaults to console.log
* @expose
*/
ByteBufferPrototype.printDebug = function(out) {
if (typeof out !== 'function') out = console.log.bind(console);
out(
this.toString()+"\n"+
"-------------------------------------------------------------------\n"+
this.toDebug(/* columns */ true)
);
};
/**
* Gets the number of remaining readable bytes. Contents are the bytes between {@link ByteBuffer#offset} and
* {@link ByteBuffer#limit}, so this returns `limit - offset`.
* @returns {number} Remaining readable bytes. May be negative if `offset > limit`.
* @expose
*/
ByteBufferPrototype.remaining = function() {
return this.limit - this.offset;
};
/**
* Resets this ByteBuffer's {@link ByteBuffer#offset}. If an offset has been marked through {@link ByteBuffer#mark}
* before, `offset` will be set to {@link ByteBuffer#markedOffset}, which will then be discarded. If no offset has been
* marked, sets `offset = 0`.
* @returns {!ByteBuffer} this
* @see ByteBuffer#mark
* @expose
*/
ByteBufferPrototype.reset = function() {
if (this.markedOffset >= 0) {
this.offset = this.markedOffset;
this.markedOffset = -1;
} else {
this.offset = 0;
}
return this;
};
/**
* Resizes this ByteBuffer to be backed by a buffer of at least the given capacity. Will do nothing if already that
* large or larger.
* @param {number} capacity Capacity required
* @returns {!ByteBuffer} this
* @throws {TypeError} If `capacity` is not a number
* @throws {RangeError} If `capacity < 0`
* @expose
*/
ByteBufferPrototype.resize = function(capacity) {
if (!this.noAssert) {
if (typeof capacity !== 'number' || capacity % 1 !== 0)
throw TypeError("Illegal capacity: "+capacity+" (not an integer)");
capacity |= 0;
if (capacity < 0)
throw RangeError("Illegal capacity: 0 <= "+capacity);
}
if (this.buffer.byteLength < capacity) {
var buffer = new ArrayBuffer(capacity);
new Uint8Array(buffer).set(new Uint8Array(this.buffer));
this.buffer = buffer;
this.view = new DataView(buffer);
}
return this;
};
/**
* Reverses this ByteBuffer's contents.
* @param {number=} begin Offset to start at, defaults to {@link ByteBuffer#offset}
* @param {number=} end Offset to end at, defaults to {@link ByteBuffer#limit}
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.reverse = function(begin, end) {
if (typeof begin === 'undefined') begin = this.offset;
if (typeof end === 'undefined') end = this.limit;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
if (begin === end)
return this; // Nothing to reverse
Array.prototype.reverse.call(new Uint8Array(this.buffer).subarray(begin, end));
this.view = new DataView(this.buffer); // FIXME: Why exactly is this necessary?
return this;
};
/**
* Skips the next `length` bytes. This will just advance
* @param {number} length Number of bytes to skip. May also be negative to move the offset back.
* @returns {!ByteBuffer} this
* @expose
*/
ByteBufferPrototype.skip = function(length) {
if (!this.noAssert) {
if (typeof length !== 'number' || length % 1 !== 0)
throw TypeError("Illegal length: "+length+" (not an integer)");
length |= 0;
}
var offset = this.offset + length;
if (!this.noAssert) {
if (offset < 0 || offset > this.buffer.byteLength)
throw RangeError("Illegal length: 0 <= "+this.offset+" + "+length+" <= "+this.buffer.byteLength);
}
this.offset = offset;
return this;
};
/**
* Slices this ByteBuffer by creating a cloned instance with `offset = begin` and `limit = end`.
* @param {number=} begin Begin offset, defaults to {@link ByteBuffer#offset}.
* @param {number=} end End offset, defaults to {@link ByteBuffer#limit}.
* @returns {!ByteBuffer} Clone of this ByteBuffer with slicing applied, backed by the same {@link ByteBuffer#buffer}
* @expose
*/
ByteBufferPrototype.slice = function(begin, end) {
if (typeof begin === 'undefined') begin = this.offset;
if (typeof end === 'undefined') end = this.limit;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
var bb = this.clone();
bb.offset = begin;
bb.limit = end;
return bb;
};
/**
* Returns a copy of the backing buffer that contains this ByteBuffer's contents. Contents are the bytes between
* {@link ByteBuffer#offset} and {@link ByteBuffer#limit}. Will transparently {@link ByteBuffer#flip} this
* ByteBuffer if `offset > limit` but the actual offsets remain untouched.
* @param {boolean=} forceCopy If `true` returns a copy, otherwise returns a view referencing the same memory if
* possible. Defaults to `false`
* @returns {!ArrayBuffer} Contents as an ArrayBuffer
* @expose
*/
ByteBufferPrototype.toBuffer = function(forceCopy) {
var offset = this.offset,
limit = this.limit;
if (offset > limit) {
var t = offset;
offset = limit;
limit = t;
}
if (!this.noAssert) {
if (typeof offset !== 'number' || offset % 1 !== 0)
throw TypeError("Illegal offset: Not an integer");
offset >>>= 0;
if (typeof limit !== 'number' || limit % 1 !== 0)
throw TypeError("Illegal limit: Not an integer");
limit >>>= 0;
if (offset < 0 || offset > limit || limit > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+offset+" <= "+limit+" <= "+this.buffer.byteLength);
}
// NOTE: It's not possible to have another ArrayBuffer reference the same memory as the backing buffer. This is
// possible with Uint8Array#subarray only, but we have to return an ArrayBuffer by contract. So:
if (!forceCopy && offset === 0 && limit === this.buffer.byteLength) {
return this.buffer;
}
if (offset === limit) {
return EMPTY_BUFFER;
}
var buffer = new ArrayBuffer(limit - offset);
new Uint8Array(buffer).set(new Uint8Array(this.buffer).subarray(offset, limit), 0);
return buffer;
};
/**
* Returns a raw buffer compacted to contain this ByteBuffer's contents. Contents are the bytes between
* {@link ByteBuffer#offset} and {@link ByteBuffer#limit}. Will transparently {@link ByteBuffer#flip} this
* ByteBuffer if `offset > limit` but the actual offsets remain untouched. This is an alias of
* {@link ByteBuffer#toBuffer}.
* @function
* @param {boolean=} forceCopy If `true` returns a copy, otherwise returns a view referencing the same memory.
* Defaults to `false`
* @returns {!ArrayBuffer} Contents as an ArrayBuffer
* @expose
*/
ByteBufferPrototype.toArrayBuffer = ByteBufferPrototype.toBuffer;
/**
* Converts the ByteBuffer's contents to a string.
* @param {string=} encoding Output encoding. Returns an informative string representation if omitted but also allows
* direct conversion to "utf8", "hex", "base64" and "binary" encoding. "debug" returns a hex representation with
* highlighted offsets.
* @param {number=} begin Offset to begin at, defaults to {@link ByteBuffer#offset}
* @param {number=} end Offset to end at, defaults to {@link ByteBuffer#limit}
* @returns {string} String representation
* @throws {Error} If `encoding` is invalid
* @expose
*/
ByteBufferPrototype.toString = function(encoding, begin, end) {
if (typeof encoding === 'undefined')
return "ByteBufferAB(offset="+this.offset+",markedOffset="+this.markedOffset+",limit="+this.limit+",capacity="+this.capacity()+")";
if (typeof encoding === 'number')
encoding = "utf8",
begin = encoding,
end = begin;
switch (encoding) {
case "utf8":
return this.toUTF8(begin, end);
case "base64":
return this.toBase64(begin, end);
case "hex":
return this.toHex(begin, end);
case "binary":
return this.toBinary(begin, end);
case "debug":
return this.toDebug();
case "columns":
return this.toColumns();
default:
throw Error("Unsupported encoding: "+encoding);
}
};
// lxiv-embeddable
/**
* lxiv-embeddable (c) 2014 Daniel Wirtz
* Released under the Apache License, Version 2.0
* see: https://github.com/dcodeIO/lxiv for details
*/
var lxiv = function() {
"use strict";
/**
* lxiv namespace.
* @type {!Object.}
* @exports lxiv
*/
var lxiv = {};
/**
* Character codes for output.
* @type {!Array.}
* @inner
*/
var aout = [
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 43, 47
];
/**
* Character codes for input.
* @type {!Array.}
* @inner
*/
var ain = [];
for (var i=0, k=aout.length; i>2)&0x3f]);
t = (b&0x3)<<4;
if ((b = src()) !== null) {
t |= (b>>4)&0xf;
dst(aout[(t|((b>>4)&0xf))&0x3f]);
t = (b&0xf)<<2;
if ((b = src()) !== null)
dst(aout[(t|((b>>6)&0x3))&0x3f]),
dst(aout[b&0x3f]);
else
dst(aout[t&0x3f]),
dst(61);
} else
dst(aout[t&0x3f]),
dst(61),
dst(61);
}
};
/**
* Decodes base64 char codes to bytes.
* @param {!function():number|null} src Characters source as a function returning the next char code respectively
* `null` if there are no more characters left.
* @param {!function(number)} dst Bytes destination as a function successively called with the next byte.
* @throws {Error} If a character code is invalid
*/
lxiv.decode = function(src, dst) {
var c, t1, t2;
function fail(c) {
throw Error("Illegal character code: "+c);
}
while ((c = src()) !== null) {
t1 = ain[c];
if (typeof t1 === 'undefined') fail(c);
if ((c = src()) !== null) {
t2 = ain[c];
if (typeof t2 === 'undefined') fail(c);
dst((t1<<2)>>>0|(t2&0x30)>>4);
if ((c = src()) !== null) {
t1 = ain[c];
if (typeof t1 === 'undefined')
if (c === 61) break; else fail(c);
dst(((t2&0xf)<<4)>>>0|(t1&0x3c)>>2);
if ((c = src()) !== null) {
t2 = ain[c];
if (typeof t2 === 'undefined')
if (c === 61) break; else fail(c);
dst(((t1&0x3)<<6)>>>0|t2);
}
}
}
}
};
/**
* Tests if a string is valid base64.
* @param {string} str String to test
* @returns {boolean} `true` if valid, otherwise `false`
*/
lxiv.test = function(str) {
return /^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=)?$/.test(str);
};
return lxiv;
}();
// encodings/base64
/**
* Encodes this ByteBuffer's contents to a base64 encoded string.
* @param {number=} begin Offset to begin at, defaults to {@link ByteBuffer#offset}.
* @param {number=} end Offset to end at, defaults to {@link ByteBuffer#limit}.
* @returns {string} Base64 encoded string
* @expose
*/
ByteBufferPrototype.toBase64 = function(begin, end) {
if (typeof begin === 'undefined')
begin = this.offset;
if (typeof end === 'undefined')
end = this.limit;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
var sd; lxiv.encode(function() {
return begin < end ? this.view.getUint8(begin++) : null;
}.bind(this), sd = stringDestination());
return sd();
};
/**
* Decodes a base64 encoded string to a ByteBuffer.
* @param {string} str String to decode
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} ByteBuffer
* @expose
*/
ByteBuffer.fromBase64 = function(str, littleEndian, noAssert) {
if (!noAssert) {
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
if (str.length % 4 !== 0)
throw TypeError("Illegal str: Length not a multiple of 4");
}
var bb = new ByteBuffer(str.length/4*3, littleEndian, noAssert),
i = 0;
lxiv.decode(stringSource(str), function(b) {
bb.view.setUint8(i++, b);
});
bb.limit = i;
return bb;
};
/**
* Encodes a binary string to base64 like `window.btoa` does.
* @param {string} str Binary string
* @returns {string} Base64 encoded string
* @see https://developer.mozilla.org/en-US/docs/Web/API/Window.btoa
* @expose
*/
ByteBuffer.btoa = function(str) {
return ByteBuffer.fromBinary(str).toBase64();
};
/**
* Decodes a base64 encoded string to binary like `window.atob` does.
* @param {string} b64 Base64 encoded string
* @returns {string} Binary string
* @see https://developer.mozilla.org/en-US/docs/Web/API/Window.atob
* @expose
*/
ByteBuffer.atob = function(b64) {
return ByteBuffer.fromBase64(b64).toBinary();
};
// encodings/binary
/**
* Encodes this ByteBuffer to a binary encoded string, that is using only characters 0x00-0xFF as bytes.
* @param {number=} begin Offset to begin at. Defaults to {@link ByteBuffer#offset}.
* @param {number=} end Offset to end at. Defaults to {@link ByteBuffer#limit}.
* @returns {string} Binary encoded string
* @throws {RangeError} If `offset > limit`
* @expose
*/
ByteBufferPrototype.toBinary = function(begin, end) {
begin = typeof begin === 'undefined' ? this.offset : begin;
end = typeof end === 'undefined' ? this.limit : end;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
if (begin === end)
return "";
var cc = [], pt = [];
while (begin < end) {
cc.push(this.view.getUint8(begin++));
if (cc.length >= 1024)
pt.push(String.fromCharCode.apply(String, cc)),
cc = [];
}
return pt.join('') + String.fromCharCode.apply(String, cc);
};
/**
* Decodes a binary encoded string, that is using only characters 0x00-0xFF as bytes, to a ByteBuffer.
* @param {string} str String to decode
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} ByteBuffer
* @expose
*/
ByteBuffer.fromBinary = function(str, littleEndian, noAssert) {
if (!noAssert) {
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
}
var i = 0, k = str.length, charCode,
bb = new ByteBuffer(k, littleEndian, noAssert);
while (i 255)
throw RangeError("Illegal charCode at "+i+": 0 <= "+charCode+" <= 255");
bb.view.setUint8(i++, charCode);
}
bb.limit = k;
return bb;
};
// encodings/debug
/**
* Encodes this ByteBuffer to a hex encoded string with marked offsets. Offset symbols are:
* * `<` : offset,
* * `'` : markedOffset,
* * `>` : limit,
* * `|` : offset and limit,
* * `[` : offset and markedOffset,
* * `]` : markedOffset and limit,
* * `!` : offset, markedOffset and limit
* @param {boolean=} columns If `true` returns two columns hex + ascii, defaults to `false`
* @returns {string|!Array.} Debug string or array of lines if `asArray = true`
* @expose
* @example `>00'01 02<03` contains four bytes with `limit=0, markedOffset=1, offset=3`
* @example `00[01 02 03>` contains four bytes with `offset=markedOffset=1, limit=4`
* @example `00|01 02 03` contains four bytes with `offset=limit=1, markedOffset=-1`
* @example `|` contains zero bytes with `offset=limit=0, markedOffset=-1`
*/
ByteBufferPrototype.toDebug = function(columns) {
var i = -1,
k = this.buffer.byteLength,
b,
hex = "",
asc = "",
out = "";
while (i 32 && b < 127 ? String.fromCharCode(b) : '.';
}
}
++i;
if (columns) {
if (i > 0 && i % 16 === 0 && i !== k) {
while (hex.length < 3*16+3) hex += " ";
out += hex+asc+"\n";
hex = asc = "";
}
}
if (i === this.offset && i === this.limit)
hex += i === this.markedOffset ? "!" : "|";
else if (i === this.offset)
hex += i === this.markedOffset ? "[" : "<";
else if (i === this.limit)
hex += i === this.markedOffset ? "]" : ">";
else
hex += i === this.markedOffset ? "'" : (columns || (i !== 0 && i !== k) ? " " : "");
}
if (columns && hex !== " ") {
while (hex.length < 3*16+3) hex += " ";
out += hex+asc+"\n";
}
return columns ? out : hex;
};
/**
* Decodes a hex encoded string with marked offsets to a ByteBuffer.
* @param {string} str Debug string to decode (not be generated with `columns = true`)
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} ByteBuffer
* @expose
* @see ByteBuffer#toDebug
*/
ByteBuffer.fromDebug = function(str, littleEndian, noAssert) {
var k = str.length,
bb = new ByteBuffer(((k+1)/3)|0, littleEndian, noAssert);
var i = 0, j = 0, ch, b,
rs = false, // Require symbol next
ho = false, hm = false, hl = false, // Already has offset, markedOffset, limit?
fail = false;
while (i':
if (!noAssert) {
if (hl) {
fail = true; break;
}
hl = true;
}
bb.limit = j;
rs = false;
break;
case "'":
if (!noAssert) {
if (hm) {
fail = true; break;
}
hm = true;
}
bb.markedOffset = j;
rs = false;
break;
case ' ':
rs = false;
break;
default:
if (!noAssert) {
if (rs) {
fail = true; break;
}
}
b = parseInt(ch+str.charAt(i++), 16);
if (!noAssert) {
if (isNaN(b) || b < 0 || b > 255)
throw TypeError("Illegal str: Not a debug encoded string");
}
bb.view.setUint8(j++, b);
rs = true;
}
if (fail)
throw TypeError("Illegal str: Invalid symbol at "+i);
}
if (!noAssert) {
if (!ho || !hl)
throw TypeError("Illegal str: Missing offset or limit");
if (j>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
var out = new Array(end - begin),
b;
while (begin < end) {
b = this.view.getUint8(begin++);
if (b < 0x10)
out.push("0", b.toString(16));
else out.push(b.toString(16));
}
return out.join('');
};
/**
* Decodes a hex encoded string to a ByteBuffer.
* @param {string} str String to decode
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} ByteBuffer
* @expose
*/
ByteBuffer.fromHex = function(str, littleEndian, noAssert) {
if (!noAssert) {
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
if (str.length % 2 !== 0)
throw TypeError("Illegal str: Length not a multiple of 2");
}
var k = str.length,
bb = new ByteBuffer((k / 2) | 0, littleEndian),
b;
for (var i=0, j=0; i 255)
throw TypeError("Illegal str: Contains non-hex characters");
bb.view.setUint8(j++, b);
}
bb.limit = j;
return bb;
};
// utfx-embeddable
/**
* utfx-embeddable (c) 2014 Daniel Wirtz
* Released under the Apache License, Version 2.0
* see: https://github.com/dcodeIO/utfx for details
*/
var utfx = function() {
"use strict";
/**
* utfx namespace.
* @inner
* @type {!Object.}
*/
var utfx = {};
/**
* Maximum valid code point.
* @type {number}
* @const
*/
utfx.MAX_CODEPOINT = 0x10FFFF;
/**
* Encodes UTF8 code points to UTF8 bytes.
* @param {(!function():number|null) | number} src Code points source, either as a function returning the next code point
* respectively `null` if there are no more code points left or a single numeric code point.
* @param {!function(number)} dst Bytes destination as a function successively called with the next byte
*/
utfx.encodeUTF8 = function(src, dst) {
var cp = null;
if (typeof src === 'number')
cp = src,
src = function() { return null; };
while (cp !== null || (cp = src()) !== null) {
if (cp < 0x80)
dst(cp&0x7F);
else if (cp < 0x800)
dst(((cp>>6)&0x1F)|0xC0),
dst((cp&0x3F)|0x80);
else if (cp < 0x10000)
dst(((cp>>12)&0x0F)|0xE0),
dst(((cp>>6)&0x3F)|0x80),
dst((cp&0x3F)|0x80);
else
dst(((cp>>18)&0x07)|0xF0),
dst(((cp>>12)&0x3F)|0x80),
dst(((cp>>6)&0x3F)|0x80),
dst((cp&0x3F)|0x80);
cp = null;
}
};
/**
* Decodes UTF8 bytes to UTF8 code points.
* @param {!function():number|null} src Bytes source as a function returning the next byte respectively `null` if there
* are no more bytes left.
* @param {!function(number)} dst Code points destination as a function successively called with each decoded code point.
* @throws {RangeError} If a starting byte is invalid in UTF8
* @throws {Error} If the last sequence is truncated. Has an array property `bytes` holding the
* remaining bytes.
*/
utfx.decodeUTF8 = function(src, dst) {
var a, b, c, d, fail = function(b) {
b = b.slice(0, b.indexOf(null));
var err = Error(b.toString());
err.name = "TruncatedError";
err['bytes'] = b;
throw err;
};
while ((a = src()) !== null) {
if ((a&0x80) === 0)
dst(a);
else if ((a&0xE0) === 0xC0)
((b = src()) === null) && fail([a, b]),
dst(((a&0x1F)<<6) | (b&0x3F));
else if ((a&0xF0) === 0xE0)
((b=src()) === null || (c=src()) === null) && fail([a, b, c]),
dst(((a&0x0F)<<12) | ((b&0x3F)<<6) | (c&0x3F));
else if ((a&0xF8) === 0xF0)
((b=src()) === null || (c=src()) === null || (d=src()) === null) && fail([a, b, c ,d]),
dst(((a&0x07)<<18) | ((b&0x3F)<<12) | ((c&0x3F)<<6) | (d&0x3F));
else throw RangeError("Illegal starting byte: "+a);
}
};
/**
* Converts UTF16 characters to UTF8 code points.
* @param {!function():number|null} src Characters source as a function returning the next char code respectively
* `null` if there are no more characters left.
* @param {!function(number)} dst Code points destination as a function successively called with each converted code
* point.
*/
utfx.UTF16toUTF8 = function(src, dst) {
var c1, c2 = null;
while (true) {
if ((c1 = c2 !== null ? c2 : src()) === null)
break;
if (c1 >= 0xD800 && c1 <= 0xDFFF) {
if ((c2 = src()) !== null) {
if (c2 >= 0xDC00 && c2 <= 0xDFFF) {
dst((c1-0xD800)*0x400+c2-0xDC00+0x10000);
c2 = null; continue;
}
}
}
dst(c1);
}
if (c2 !== null) dst(c2);
};
/**
* Converts UTF8 code points to UTF16 characters.
* @param {(!function():number|null) | number} src Code points source, either as a function returning the next code point
* respectively `null` if there are no more code points left or a single numeric code point.
* @param {!function(number)} dst Characters destination as a function successively called with each converted char code.
* @throws {RangeError} If a code point is out of range
*/
utfx.UTF8toUTF16 = function(src, dst) {
var cp = null;
if (typeof src === 'number')
cp = src, src = function() { return null; };
while (cp !== null || (cp = src()) !== null) {
if (cp <= 0xFFFF)
dst(cp);
else
cp -= 0x10000,
dst((cp>>10)+0xD800),
dst((cp%0x400)+0xDC00);
cp = null;
}
};
/**
* Converts and encodes UTF16 characters to UTF8 bytes.
* @param {!function():number|null} src Characters source as a function returning the next char code respectively `null`
* if there are no more characters left.
* @param {!function(number)} dst Bytes destination as a function successively called with the next byte.
*/
utfx.encodeUTF16toUTF8 = function(src, dst) {
utfx.UTF16toUTF8(src, function(cp) {
utfx.encodeUTF8(cp, dst);
});
};
/**
* Decodes and converts UTF8 bytes to UTF16 characters.
* @param {!function():number|null} src Bytes source as a function returning the next byte respectively `null` if there
* are no more bytes left.
* @param {!function(number)} dst Characters destination as a function successively called with each converted char code.
* @throws {RangeError} If a starting byte is invalid in UTF8
* @throws {Error} If the last sequence is truncated. Has an array property `bytes` holding the remaining bytes.
*/
utfx.decodeUTF8toUTF16 = function(src, dst) {
utfx.decodeUTF8(src, function(cp) {
utfx.UTF8toUTF16(cp, dst);
});
};
/**
* Calculates the byte length of an UTF8 code point.
* @param {number} cp UTF8 code point
* @returns {number} Byte length
*/
utfx.calculateCodePoint = function(cp) {
return (cp < 0x80) ? 1 : (cp < 0x800) ? 2 : (cp < 0x10000) ? 3 : 4;
};
/**
* Calculates the number of UTF8 bytes required to store UTF8 code points.
* @param {(!function():number|null)} src Code points source as a function returning the next code point respectively
* `null` if there are no more code points left.
* @returns {number} The number of UTF8 bytes required
*/
utfx.calculateUTF8 = function(src) {
var cp, l=0;
while ((cp = src()) !== null)
l += utfx.calculateCodePoint(cp);
return l;
};
/**
* Calculates the number of UTF8 code points respectively UTF8 bytes required to store UTF16 char codes.
* @param {(!function():number|null)} src Characters source as a function returning the next char code respectively
* `null` if there are no more characters left.
* @returns {!Array.} The number of UTF8 code points at index 0 and the number of UTF8 bytes required at index 1.
*/
utfx.calculateUTF16asUTF8 = function(src) {
var n=0, l=0;
utfx.UTF16toUTF8(src, function(cp) {
++n; l += utfx.calculateCodePoint(cp);
});
return [n,l];
};
return utfx;
}();
// encodings/utf8
/**
* Encodes this ByteBuffer's contents between {@link ByteBuffer#offset} and {@link ByteBuffer#limit} to an UTF8 encoded
* string.
* @returns {string} Hex encoded string
* @throws {RangeError} If `offset > limit`
* @expose
*/
ByteBufferPrototype.toUTF8 = function(begin, end) {
if (typeof begin === 'undefined') begin = this.offset;
if (typeof end === 'undefined') end = this.limit;
if (!this.noAssert) {
if (typeof begin !== 'number' || begin % 1 !== 0)
throw TypeError("Illegal begin: Not an integer");
begin >>>= 0;
if (typeof end !== 'number' || end % 1 !== 0)
throw TypeError("Illegal end: Not an integer");
end >>>= 0;
if (begin < 0 || begin > end || end > this.buffer.byteLength)
throw RangeError("Illegal range: 0 <= "+begin+" <= "+end+" <= "+this.buffer.byteLength);
}
var sd; try {
utfx.decodeUTF8toUTF16(function() {
return begin < end ? this.view.getUint8(begin++) : null;
}.bind(this), sd = stringDestination());
} catch (e) {
if (begin !== end)
throw RangeError("Illegal range: Truncated data, "+begin+" != "+end);
}
return sd();
};
/**
* Decodes an UTF8 encoded string to a ByteBuffer.
* @param {string} str String to decode
* @param {boolean=} littleEndian Whether to use little or big endian byte order. Defaults to
* {@link ByteBuffer.DEFAULT_ENDIAN}.
* @param {boolean=} noAssert Whether to skip assertions of offsets and values. Defaults to
* {@link ByteBuffer.DEFAULT_NOASSERT}.
* @returns {!ByteBuffer} ByteBuffer
* @expose
*/
ByteBuffer.fromUTF8 = function(str, littleEndian, noAssert) {
if (!noAssert)
if (typeof str !== 'string')
throw TypeError("Illegal str: Not a string");
var bb = new ByteBuffer(utfx.calculateUTF16asUTF8(stringSource(str), true)[1], littleEndian, noAssert),
i = 0;
utfx.encodeUTF16toUTF8(stringSource(str), function(b) {
bb.view.setUint8(i++, b);
});
bb.limit = i;
return bb;
};
return ByteBuffer;
}
/* CommonJS */ if (typeof require === 'function' && typeof module === 'object' && module && typeof exports === 'object' && exports)
module['exports'] = (function() {
var Long; try { Long = require("long"); } catch (e) {}
return loadByteBuffer(Long);
})();
/* AMD */ else if (typeof define === 'function' && define["amd"])
define("ByteBuffer", ["Long"], function(Long) { return loadByteBuffer(Long); });
/* Global */ else
(global["dcodeIO"] = global["dcodeIO"] || {})["ByteBuffer"] = loadByteBuffer(global["dcodeIO"]["Long"]);
})(this);
/*
Copyright 2013 Daniel Wirtz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @license ProtoBuf.js (c) 2013 Daniel Wirtz
* Released under the Apache License, Version 2.0
* see: https://github.com/dcodeIO/ProtoBuf.js for details
*/
(function(global) {
"use strict";
function init(ByteBuffer) {
/**
* The ProtoBuf namespace.
* @exports ProtoBuf
* @namespace
* @expose
*/
var ProtoBuf = {};
/**
* ProtoBuf.js version.
* @type {string}
* @const
* @expose
*/
ProtoBuf.VERSION = "3.8.0";
/**
* Wire types.
* @type {Object.}
* @const
* @expose
*/
ProtoBuf.WIRE_TYPES = {};
/**
* Varint wire type.
* @type {number}
* @expose
*/
ProtoBuf.WIRE_TYPES.VARINT = 0;
/**
* Fixed 64 bits wire type.
* @type {number}
* @const
* @expose
*/
ProtoBuf.WIRE_TYPES.BITS64 = 1;
/**
* Length delimited wire type.
* @type {number}
* @const
* @expose
*/
ProtoBuf.WIRE_TYPES.LDELIM = 2;
/**
* Start group wire type.
* @type {number}
* @const
* @expose
*/
ProtoBuf.WIRE_TYPES.STARTGROUP = 3;
/**
* End group wire type.
* @type {number}
* @const
* @expose
*/
ProtoBuf.WIRE_TYPES.ENDGROUP = 4;
/**
* Fixed 32 bits wire type.
* @type {number}
* @const
* @expose
*/
ProtoBuf.WIRE_TYPES.BITS32 = 5;
/**
* Packable wire types.
* @type {!Array.}
* @const
* @expose
*/
ProtoBuf.PACKABLE_WIRE_TYPES = [
ProtoBuf.WIRE_TYPES.VARINT,
ProtoBuf.WIRE_TYPES.BITS64,
ProtoBuf.WIRE_TYPES.BITS32
];
/**
* Types.
* @dict
* @type {Object.}
* @const
* @expose
*/
ProtoBuf.TYPES = {
// According to the protobuf spec.
"int32": {
name: "int32",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"uint32": {
name: "uint32",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"sint32": {
name: "sint32",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"int64": {
name: "int64",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"uint64": {
name: "uint64",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"sint64": {
name: "sint64",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"bool": {
name: "bool",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"double": {
name: "double",
wireType: ProtoBuf.WIRE_TYPES.BITS64
},
"string": {
name: "string",
wireType: ProtoBuf.WIRE_TYPES.LDELIM
},
"bytes": {
name: "bytes",
wireType: ProtoBuf.WIRE_TYPES.LDELIM
},
"fixed32": {
name: "fixed32",
wireType: ProtoBuf.WIRE_TYPES.BITS32
},
"sfixed32": {
name: "sfixed32",
wireType: ProtoBuf.WIRE_TYPES.BITS32
},
"fixed64": {
name: "fixed64",
wireType: ProtoBuf.WIRE_TYPES.BITS64
},
"sfixed64": {
name: "sfixed64",
wireType: ProtoBuf.WIRE_TYPES.BITS64
},
"float": {
name: "float",
wireType: ProtoBuf.WIRE_TYPES.BITS32
},
"enum": {
name: "enum",
wireType: ProtoBuf.WIRE_TYPES.VARINT
},
"message": {
name: "message",
wireType: ProtoBuf.WIRE_TYPES.LDELIM
},
"group": {
name: "group",
wireType: ProtoBuf.WIRE_TYPES.STARTGROUP
}
};
/**
* Minimum field id.
* @type {number}
* @const
* @expose
*/
ProtoBuf.ID_MIN = 1;
/**
* Maximum field id.
* @type {number}
* @const
* @expose
*/
ProtoBuf.ID_MAX = 0x1FFFFFFF;
/**
* @type {!function(new: ByteBuffer, ...[*])}
* @expose
*/
ProtoBuf.ByteBuffer = ByteBuffer;
/**
* @type {?function(new: Long, ...[*])}
* @expose
*/
ProtoBuf.Long = ByteBuffer.Long || null;
/**
* If set to `true`, field names will be converted from underscore notation to camel case. Defaults to `false`.
* Must be set prior to parsing.
* @type {boolean}
* @expose
*/
ProtoBuf.convertFieldsToCamelCase = false;
/**
* By default, messages are populated with (setX, set_x) accessors for each field. This can be disabled by
* setting this to `false` prior to building messages.
* @type {boolean}
* @expose
*/
ProtoBuf.populateAccessors = true;
/**
* @alias ProtoBuf.Util
* @expose
*/
ProtoBuf.Util = (function() {
"use strict";
// Object.create polyfill
// ref: https://developer.mozilla.org/de/docs/JavaScript/Reference/Global_Objects/Object/create
if (!Object.create)
/** @expose */
Object.create = function (o) {
if (arguments.length > 1)
throw Error('Object.create polyfill only accepts the first parameter.');
function F() {}
F.prototype = o;
return new F();
};
/**
* ProtoBuf utilities.
* @exports ProtoBuf.Util
* @namespace
*/
var Util = {};
/**
* Flag if running in node (fs is available) or not.
* @type {boolean}
* @const
* @expose
*/
Util.IS_NODE = false;
try {
// There is no reliable way to detect node.js as an environment, so our
// best bet is to feature-detect what we actually need.
Util.IS_NODE =
typeof require === 'function' &&
typeof require("fs").readFileSync === 'function' &&
typeof require("path").resolve === 'function';
} catch (e) {}
/**
* Constructs a XMLHttpRequest object.
* @return {XMLHttpRequest}
* @throws {Error} If XMLHttpRequest is not supported
* @expose
*/
Util.XHR = function() {
// No dependencies please, ref: http://www.quirksmode.org/js/xmlhttp.html
var XMLHttpFactories = [
function () {return new XMLHttpRequest()},
function () {return new ActiveXObject("Msxml2.XMLHTTP")},
function () {return new ActiveXObject("Msxml3.XMLHTTP")},
function () {return new ActiveXObject("Microsoft.XMLHTTP")}
];
/** @type {?XMLHttpRequest} */
var xhr = null;
for (var i=0;i}
* @expose
*/
ProtoBuf.Lang = {
OPEN: "{",
CLOSE: "}",
OPTOPEN: "[",
OPTCLOSE: "]",
OPTEND: ",",
EQUAL: "=",
END: ";",
STRINGOPEN: '"',
STRINGCLOSE: '"',
STRINGOPEN_SQ: "'",
STRINGCLOSE_SQ: "'",
COPTOPEN: '(',
COPTCLOSE: ')',
DELIM: /[\s\{\}=;\[\],'"\(\)]/g,
// KEYWORD: /^(?:package|option|import|message|enum|extend|service|syntax|extensions|group)$/,
RULE: /^(?:required|optional|repeated)$/,
TYPE: /^(?:double|float|int32|uint32|sint32|int64|uint64|sint64|fixed32|sfixed32|fixed64|sfixed64|bool|string|bytes)$/,
NAME: /^[a-zA-Z_][a-zA-Z_0-9]*$/,
TYPEDEF: /^[a-zA-Z][a-zA-Z_0-9]*$/,
TYPEREF: /^(?:\.?[a-zA-Z_][a-zA-Z_0-9]*)+$/,
FQTYPEREF: /^(?:\.[a-zA-Z][a-zA-Z_0-9]*)+$/,
NUMBER: /^-?(?:[1-9][0-9]*|0|0x[0-9a-fA-F]+|0[0-7]+|([0-9]*\.[0-9]+([Ee][+-]?[0-9]+)?))$/,
NUMBER_DEC: /^(?:[1-9][0-9]*|0)$/,
NUMBER_HEX: /^0x[0-9a-fA-F]+$/,
NUMBER_OCT: /^0[0-7]+$/,
NUMBER_FLT: /^[0-9]*\.[0-9]+([Ee][+-]?[0-9]+)?$/,
ID: /^(?:[1-9][0-9]*|0|0x[0-9a-fA-F]+|0[0-7]+)$/,
NEGID: /^\-?(?:[1-9][0-9]*|0|0x[0-9a-fA-F]+|0[0-7]+)$/,
WHITESPACE: /\s/,
STRING: /['"]([^'"\\]*(\\.[^"\\]*)*)['"]/g,
BOOL: /^(?:true|false)$/i
};
/**
* @alias ProtoBuf.DotProto
* @expose
*/
ProtoBuf.DotProto = (function(ProtoBuf, Lang) {
"use strict";
/**
* Utilities to parse .proto files.
* @exports ProtoBuf.DotProto
* @namespace
*/
var DotProto = {};
/**
* Constructs a new Tokenizer.
* @exports ProtoBuf.DotProto.Tokenizer
* @class prototype tokenizer
* @param {string} proto Proto to tokenize
* @constructor
*/
var Tokenizer = function(proto) {
/**
* Source to parse.
* @type {string}
* @expose
*/
this.source = ""+proto; // In case it's a buffer
/**
* Current index.
* @type {number}
* @expose
*/
this.index = 0;
/**
* Current line.
* @type {number}
* @expose
*/
this.line = 1;
/**
* Stacked values.
* @type {Array}
* @expose
*/
this.stack = [];
/**
* Whether currently reading a string or not.
* @type {boolean}
* @expose
*/
this.readingString = false;
/**
* Whatever character ends the string. Either a single or double quote character.
* @type {string}
* @expose
*/
this.stringEndsWith = Lang.STRINGCLOSE;
};
/**
* @alias ProtoBuf.DotProto.Tokenizer.prototype
* @inner
*/
var TokenizerPrototype = Tokenizer.prototype;
/**
* Reads a string beginning at the current index.
* @return {string} The string
* @throws {Error} If it's not a valid string
* @private
*/
TokenizerPrototype._readString = function() {
Lang.STRING.lastIndex = this.index-1; // Include the open quote
var match;
if ((match = Lang.STRING.exec(this.source)) !== null) {
var s = match[1];
this.index = Lang.STRING.lastIndex;
this.stack.push(this.stringEndsWith);
return s;
}
throw Error("Unterminated string at line "+this.line+", index "+this.index);
};
/**
* Gets the next token and advances by one.
* @return {?string} Token or `null` on EOF
* @throws {Error} If it's not a valid proto file
* @expose
*/
TokenizerPrototype.next = function() {
if (this.stack.length > 0)
return this.stack.shift();
if (this.index >= this.source.length)
return null; // No more tokens
if (this.readingString) {
this.readingString = false;
return this._readString();
}
var repeat, last;
do {
repeat = false;
// Strip white spaces
while (Lang.WHITESPACE.test(last = this.source.charAt(this.index))) {
this.index++;
if (last === "\n")
this.line++;
if (this.index === this.source.length)
return null;
}
// Strip comments
if (this.source.charAt(this.index) === '/') {
if (this.source.charAt(++this.index) === '/') { // Single line
while (this.source.charAt(this.index) !== "\n") {
this.index++;
if (this.index == this.source.length)
return null;
}
this.index++;
this.line++;
repeat = true;
} else if (this.source.charAt(this.index) === '*') { /* Block */
last = '';
while (last+(last=this.source.charAt(this.index)) !== '*/') {
this.index++;
if (last === "\n")
this.line++;
if (this.index === this.source.length)
return null;
}
this.index++;
repeat = true;
} else
throw Error("Unterminated comment at line "+this.line+": /"+this.source.charAt(this.index));
}
} while (repeat);
if (this.index === this.source.length) return null;
// Read the next token
var end = this.index;
Lang.DELIM.lastIndex = 0;
var delim = Lang.DELIM.test(this.source.charAt(end));
if (!delim) {
++end;
while(end < this.source.length && !Lang.DELIM.test(this.source.charAt(end)))
end++;
} else
++end;
var token = this.source.substring(this.index, this.index = end);
if (token === Lang.STRINGOPEN)
this.readingString = true,
this.stringEndsWith = Lang.STRINGCLOSE;
else if (token === Lang.STRINGOPEN_SQ)
this.readingString = true,
this.stringEndsWith = Lang.STRINGCLOSE_SQ;
return token;
};
/**
* Peeks for the next token.
* @return {?string} Token or `null` on EOF
* @throws {Error} If it's not a valid proto file
* @expose
*/
TokenizerPrototype.peek = function() {
if (this.stack.length === 0) {
var token = this.next();
if (token === null)
return null;
this.stack.push(token);
}
return this.stack[0];
};
/**
* Returns a string representation of this object.
* @return {string} String representation as of "Tokenizer(index/length)"
* @expose
*/
TokenizerPrototype.toString = function() {
return "Tokenizer("+this.index+"/"+this.source.length+" at line "+this.line+")";
};
/**
* @alias ProtoBuf.DotProto.Tokenizer
* @expose
*/
DotProto.Tokenizer = Tokenizer;
/**
* Constructs a new Parser.
* @exports ProtoBuf.DotProto.Parser
* @class prototype parser
* @param {string} proto Protocol source
* @constructor
*/
var Parser = function(proto) {
/**
* Tokenizer.
* @type {ProtoBuf.DotProto.Tokenizer}
* @expose
*/
this.tn = new Tokenizer(proto);
};
/**
* @alias ProtoBuf.DotProto.Parser.prototype
* @inner
*/
var ParserPrototype = Parser.prototype;
/**
* Runs the parser.
* @return {{package: string|null, messages: Array.