gadget-flash-extractor/spi_flash.c

286 lines
6 KiB
C
Raw Permalink Normal View History

2019-05-24 09:26:55 +02:00
/* spi_flash.c
*
* Generic implementation of the read/write/erase
* functionalities, on top of the spi_drv.h HAL.
*
* this is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* this software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include "spi_drv.h"
#include "spi_flash.h"
#define JEDEC_ID 0x9F
#define MDID 0x90
#define RDSR 0x05
#define WRSR 0x01
# define ST_BUSY (1 << 0)
# define ST_WEL (1 << 1)
# define ST_BP0 (1 << 2)
# define ST_BP1 (1 << 3)
# define ST_BP2 (1 << 4)
# define ST_BP3 (1 << 5)
# define ST_AAI (1 << 6)
# define ST_BRO (1 << 7)
#define WREN 0x06
#define WRDI 0x04
#define SECTOR_ERASE 0x20
#define BYTE_READ 0x03
#define BYTE_WRITE 0x02
#define AUTOINC 0xAD
#define EWSR 0x50
#define EBSY 0x70
#define DBSY 0x80
static enum write_mode {
WB_WRITEPAGE = 0x00,
SST_SINGLEBYTE = 0x01
} chip_write_mode = WB_WRITEPAGE;
static void write_address(uint32_t address)
{
spi_write((address & 0xFF0000) >> 16);
spi_read();
spi_write((address & 0xFF00) >> 8);
spi_read();
spi_write((address & 0xFF));
spi_read();
}
static uint8_t read_status(void)
{
uint8_t status;
spi_cs_on();
spi_write(RDSR);
spi_read();
spi_write(0xFF);
status = spi_read();
spi_cs_off();
return status;
}
static void spi_cmd(uint8_t cmd)
{
spi_cs_on();
spi_write(cmd);
spi_read();
spi_cs_off();
}
static void flash_write_enable(void)
{
uint8_t status;
do {
spi_cmd(WREN);
status = read_status();
} while ((status & ST_WEL) == 0);
}
static void flash_write_disable(void)
{
uint8_t status;
spi_cmd(WRDI);
}
static void wait_busy(void)
{
volatile uint8_t status;
do {
status = read_status();
} while(status & ST_BUSY);
}
static int spi_flash_write_page(uint32_t address, const void *data, int len)
{
const uint8_t *buf = data;
int j = 0;
while (len > 0) {
wait_busy();
flash_write_enable();
wait_busy();
spi_cs_on();
spi_write(BYTE_WRITE);
spi_read();
write_address(address);
do {
spi_write(buf[j++]);
address++;
spi_read();
len--;
} while ((len > 0) && (address & (SPI_FLASH_PAGE_SIZE - 1)) != 0);
spi_cs_off();
}
wait_busy();
return j;
}
static int spi_flash_write_sb(uint32_t address, const void *data, int len)
{
const uint8_t *buf = data;
const uint8_t verify;
int j = 0;
wait_busy();
if (len < 1)
return -1;
while (len > 0) {
flash_write_enable();
spi_cs_on();
spi_write(BYTE_WRITE);
spi_read();
write_address(address);
spi_write(buf[j]);
spi_read();
spi_cs_off();
wait_busy();
spi_flash_read(address, (uint8_t *)&verify, 1);
if ((verify & ~(buf[j])) == 0) {
if (verify != buf[j])
return -1;
j++;
len--;
address++;
}
wait_busy();
}
return 0;
}
/* --- */
static uint8_t manuf = 0, type = 0, capacity = 0;
uint32_t get_flash_size(void) {
uint32_t flash_size = 65536; // Default: 32MB
if (capacity == 0x8E)
flash_size = 8192; // 4MB
if (manuf == 0xEF && type == 0x40 && capacity == 0x16)
flash_size = 8192; // 4MB
return flash_size;
}
uint8_t get_flash_manuf(void)
{
return manuf;
}
uint8_t get_flash_type(void)
{
return type;
}
uint8_t get_flash_capacity(void)
{
return capacity;
}
uint32_t spi_flash_probe(void)
{
uint8_t b0;
int i;
spi_init(0,0);
wait_busy();
/*
spi_cs_on();
spi_write(MDID);
b0 = spi_read();
write_address(0);
spi_write(0xFF);
manuf = spi_read();
spi_write(0xFF);
product = spi_read();
spi_cs_off();
*/
spi_cs_on();
spi_write(JEDEC_ID);
spi_read();
spi_write(0xFF);
manuf = spi_read();
spi_write(0xFF);
type = spi_read();
spi_write(0xFF);
capacity = spi_read();
spi_cs_off();
if (type == 0x25)
chip_write_mode = SST_SINGLEBYTE;
if (manuf == 0xEF)
chip_write_mode = WB_WRITEPAGE;
if (manuf != 0xBF){
while(1) {
}
}
#ifndef READONLY
spi_cmd(EWSR);
spi_cs_on();
spi_write(WRSR);
spi_read();
spi_write(0x00);
spi_read();
spi_cs_off();
#endif
return (uint32_t)((manuf << 16) |( type << 8) | (capacity));
}
void spi_flash_sector_erase(uint32_t address)
{
uint8_t status;
address &= (~(SPI_FLASH_SECTOR_SIZE - 1));
wait_busy();
flash_write_enable();
spi_cs_on();
spi_write(SECTOR_ERASE);
spi_read();
write_address(address);
spi_cs_off();
wait_busy();
}
int spi_flash_read(uint32_t address, void *data, int len)
{
uint8_t *buf = data;
int i = 0;
wait_busy();
spi_cs_on();
spi_write(BYTE_READ);
spi_read();
write_address(address);
while (len > 0) {
spi_write(0xFF);
buf[i++] = spi_read();
len--;
}
spi_cs_off();
return i;
}
int spi_flash_write(uint32_t address, const void *data, int len)
{
if (chip_write_mode == SST_SINGLEBYTE)
return spi_flash_write_sb(address, data, len);
if (chip_write_mode == WB_WRITEPAGE)
return spi_flash_write_page(address, data, len);
return -1;
}